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On a counterpart to the Riesz representation
theorem in the Möbius gyrovector space

Keiichi Watanabe (Niigata University)

1 導入
Ungar の (real inner product) gyrovector space では交換法則, 結合法則, 分配法則がそのまま
では成り立たないにもかかわらず, 最近の研究によって, 或いは定義から当たり前にというべきか,

Möbius gyrovector space については Hilbert 空間との間に強いアナロジーがはたらく事が知られ
てきた. 閉部分空間による直交分解, 閉部分空間さらには閉凸集合の最近点, 正規直交基底による
直交展開などである. 線形作用素の対応物はどうなっているだろうかという自然な問題について,

分かっていることを報告する.

この節ではMöbius Gyrovector Spaceの定義および若干の注意事項と,直交基底に関する任意元の
直交ジャイロ展開までの結果のうち,いくつかの主要なものを述べる. 抽象的な (gyrocommutative)

gyrogroup, gyrovector space の定義や基本的事項は [U]を参照していただきたい. なお, 結果の一
部は阿部敏一氏（茨城大学）との共同研究によるものです.

Möbius Gyrovector Spaces.[U] Vを任意の実内積空間, 固定された正の数 sに対して

Vs = {a ∈ V; ||a|| < s}

とする. Möbius の和および Möbius のスカラー倍は

a ⊕
M
b =

(
1 + 2

s2
a·b + 1

s2
||b||2

)
a +

(
1 − 1

s2
||a||2

)
b

1 + 2
s2
a·b + 1

s4
||a||2||b||2

r⊗
M
a = s tanh

(
r tanh−1 ||a||

s

)
a

||a||
(if a ̸= 0), r⊗

M
0 = 0

for all a, b ∈ Vs, r ∈ Rによって定義される.

公理 (VV) の, ||Vs|| = (−s, s)における演算⊕M, ⊗M（同一の記号が使われる）は

a ⊕
M
b =

a+ b

1 + 1
s2
ab

r⊗
M
a = s tanh

(
r tanh−1 a

s

)
1



for all a, b ∈ (−s, s), r ∈ Rによって定義される.

このとき, (Vs,⊕M,⊗M)は gyrovector space となる. ⊕
M
,⊗

M
をそれぞれ単に⊕,⊗と書く.

異なる種類の演算が同一の数式に現れたならば, (1) 通常のスカラー倍 (2) 演算⊗ (3) 演算⊕ で
優先順を与える, すなわち,

r1⊗w1a1 ⊕ r2⊗w2a2 = {r1⊗(w1a1)} ⊕ {r2⊗(w2a2)}.

そしてこのような場合の括弧は省略する.

一般には, 演算は可換でも, 結合的でも, 分配的でもないことに注意する:

a⊕ b ̸= b⊕ a

a⊕ (b⊕ c) ̸= (a⊕ b) ⊕ c

r⊗(a⊕ b) ̸= r⊗a⊕ r⊗b

t(a⊕ b) ̸= ta⊕ tb.

しかし, 左（および右）ジャイロ結合法則, ジャイロ交換法則, スカラー分配法則, スカラー結合法
則などがあるように, gyrovector space は解明すべき豊かな対称性を有している.

s→ ∞とするとVsは全空間Vに拡大し, 演算⊕,⊗は通常のベクトル和, スカラー倍に近づく.

命題. [U]

a⊕ b → a + b (s→ ∞)

r⊗a → ra (s→ ∞).

Definition. A subset M of Vs is a gyrovector subspace if

a, b ∈M, r ∈ R ⇒ a⊕ b ∈M, r⊗a ∈M.

For any subset A of Vs, we use the notation∨
gA =

∩
{M ; A ⊂M , M is a gyrovector subspace of Vs} .

Theorem.(Abe and W) Let (V1,⊕,⊗) be the Möbius gyrovector space, 0 ̸= a1, · · · ,an ∈ V1

and let (i1, · · · , in) be a permutation of (1, · · · , n). For an arbitrary given order of gyroaddition

of ri1⊗ai1 ⊕ · · · ⊕ rin⊗ain ,∨
g{a1, · · · ,an} = {ri1⊗ai1 ⊕ · · · ⊕ rin⊗ain ; ri1 , · · · , rin ∈ R}

=

{
t1

a1

||a1||
+ · · · + tn

an

||an||
; t1, · · · , tn ∈ R

}
∩ V1.

Remark. We have the same result for finitely generated gyrovector subspaces in the Einstein

gyrovector space.
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Theorem.(Abe and W) Let V be a real Hilbert space and let (V1,⊕,⊗) be the Möbius gy-

rovector space, and let M be a gyrovector subspace of V1 that is topologically relatively closed.

Suppose that

x = x1 + x2, x1 ∈ clinM, x2 ∈M⊥

is the (ordinary) orthogonal decomposition of an arbitrary element x ∈ V1 with respect to clinM ,

which is the closed linear subspace generated by M . Then, a unique pair (y, z) exists that satisfies

x = y ⊕ z, y ∈M, z ∈M⊥ ∩ V1.

Moreover, if x1,x2 ̸= 0, then these elements y, z are determined by

y = λ1x1, z = λ2x2,

where

λ1 =
||x1||2 + ||x2||2 + 1 −

√
(||x1||2 + ||x2||2 + 1)2 − 4||x1||2
2||x1||2

λ2 =
||x1||2 + ||x2||2 − 1 +

√
(||x1||2 + ||x2||2 + 1)2 − 4||x1||2
2||x2||2

.

In addition, the inequalities 0 < λ1 < 1 and λ2 > 1 hold.

Definition.[U] The Möbius gyrodistance function d on a Möbius gyrovector space (Vs,⊕,⊗) is

defined by the equation

d(a, b) = ||b⊖a||.

Moreover, the Poincaré distance function h on the ball Vs is introduced by the equation

h(a, b) = tanh−1 d(a, b)

s

for any a, b ∈ Vs. Then h satisfies the triangle inequality, so that (Vs, h) is a metric space. It is

also complete as a metric space provided V is complete.

Definition. Let {an}n be a sequence in Vs. We say that a series((
(a1 ⊕ a2) ⊕ a3

)
⊕ · · · ⊕ an

)
⊕ · · ·

converges if there exists an element x ∈ Vs such that h(x,xn) → 0 (n→ ∞), where the sequence

{xn}n is defined recursively by x1 = a1 and xn = xn−1 ⊕ an. In this case, we say the series

converges to x and denote

x =
((

(a1 ⊕ a2) ⊕ a3

)
⊕ · · · ⊕ an

)
⊕ · · · .
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Theorem. Let {en}∞n=1 be a complete orthonormal sequence in a real Hilbert space V. Let

{wn}∞n=1 be a sequence in R such that 0 < wn < s for all n. Then, any x ∈ Vs can be expressed

as a form of orthogonal gyroexpansion

x = r1⊗w1e1 ⊕ r2⊗w2e2 ⊕ · · · ⊕ rn⊗wnen ⊕ · · · ,

where the sequence of gyrocoefficients {rn}∞n=1 is determined by the following equations:

xn = x·en, x(1)
n =

n∑
j=1

xjej, x(2)
n =

∞∑
j=n+1

xjej

uj = µ
(2)
j−1 · · ·µ

(2)
1 xjej (j = 2, 3, · · · ) u1 = x1e1 = x

(1)
1

vj = µ
(2)
j−1 · · ·µ

(2)
1 x

(2)
j (j = 2, 3, · · · ) v1 = x

(2)
1

µ
(1)
j =

||uj||2 + ||vj||2 + s2 −
√

(||uj||2 + ||vj||2 + s2)2 − 4s2||uj||2
2||uj||2

µ
(2)
j =

||uj||2 + ||vj||2 − s2 +
√

(||uj||2 + ||vj||2 + s2)2 − 4s2||uj||2
2||vj||2

rj =
tanh−1 µ

(1)
j µ

(2)
j−1···µ

(2)
1 xj

s

tanh−1 wj

s

.

2 最近の結果の概要
次の 2つの結果は, Möbius gyrovector space における Riesz の表現定理の最適な対応物にはなっ
ていないと思う.

Theorem. Let V be a real Hilbert space with dimV ≥ 2. If f : V1 → (−1, 1) satisfies that

f(x⊕ y) = f(x) ⊕ f(y)

f(r⊗x) = r⊗f(x)

for any x,y ∈ V1, r ∈ R, then we have f ≡ 0.

Proposition. Let V be a real Hilbert space. If f : V → R is a continuous map and satisfies that

f(x⊕s y) − {f(x) ⊕s f(y)} → 0 (s→ ∞)

f(r⊗sx) − r⊗sf(x) → 0 (s→ ∞)
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for any x,y ∈ V, r ∈ R, then there exists a unique c ∈ V such that f(x) = x·c (x ∈ V). The

converse is also true.

T. Abe once raised the following problem in an oral presentation[A].

Problem. What are mappings between gyrolinear spaces corresponding to linear mappings be-

tween linear spaces ?

For the definition of ⊕E, please refer to any bibliography such as [U].

Theorem.(Molnár and Virosztek) Let β : R3
1 → R3

1 be a continuous map. We have β is an

algebraic endomorphism with respect to the operation ⊕E, i.e., β satisfies

β(u⊕
E
v) = β(u)⊕

E
β(v) (u, v ∈ R3

1)

if and only if either (i) or (ii) of the following holds:

(i) there is an orthogonal matrix O ∈ M3(R) such that β(v) = Ov, v ∈ R3
1

(ii) β(v) = 0, v ∈ R3
1.

Theorem.(Frenkel) For n ≥ 2, continuous endomorphisms of the Einstein gyrogroup (Rn
1 ,⊕E)

are precisely the restrictions to Rn
1 of the orthogonal transformations of Rn and 0-map.

このように, 線形作用素がベクトルの加法（およびスカラー倍）を保存することからの直接の類
推による, 演算⊕（および⊗）をすべての元の対にわたってピッタリと保存する性質は, ある意味
で強すぎる.

Definition. We denote by Mn,m(R) the set of all n×m matrices whose entries are real numbers.

The ordinary operation of matrices on vectors:

Ax =

(
a11 a12
a21 a22

)(
x1
x2

)
=

(
a11x1 + a12x2
a21x1 + a22x2

)

A : x1e1 + x2e2 7→ (a11x1 + a12x2)f 1 + (a21x1 + a22x2)f 2

Suppose that {ej}mj=1 (resp. {f i}ni=1) be an orthonormal basis in U (resp. V). For an arbitrary

element x ∈ U1, we can apply the orthogonal gyroexpansion to get a unique m-tuple (r1, · · · , rm)

of real numbers such that

x = r1⊗1
e1

2
⊕1 · · · ⊕1 rm⊗1

em

2
.

Then we can define a map f : U1 → V1 by the equation
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f(x) = (a11r1 + · · · + a1mrm)⊗1
f 1

2
⊕1

· · · ⊕1 (an1r1 + · · · + anmrm)⊗1
fn

2
.

We say that f is the induced map from the matrix A.

For any map f : U1 → V1 and any s > 0, we can define a map fs : Us → Vs by the equation

fs(x) = sf
(x
s

)
(x ∈ Us). (1)

Theorem. Let U and V be two real Hilbert spaces and A ∈ Mn,m(R). If f : (U1,⊕1,⊗1) →
(V1,⊕1,⊗1) is the induced map from the matrix A and fs is defined by (1), then, for arbitrary

x, y ∈ U and r ∈ R, we have

fs(x⊕s y) → A(x + y)

fs(x) ⊕s fs(y) → Ax + Ay

fs(r⊗sx) → Arx

r⊗sfs(x) → rAx

as s→ ∞.

Theorem. Let U, V, W are real Hilbert spaces. Let A = (aij) ∈ Mn,m(R), B = (bij) ∈ Mp,n(R).

Suppose that {ej}mj=1, {f i}ni=1, {gk}
p
k=1 be an orthonormal basis in U, V, W, respectively. Let f

(resp. g) be the induced map from matrix A (resp. B). Then the composed map g ◦ f is also an

induced map from the matrix BA.

Theorem. Let f be the induced map from a matrix A and f ∗ be the induced map from the

adjoint matrix A∗. Then

−f ∗
s (x)·y ⊕s x·fs(y) → 0 (s→ ∞).

このように, Hilbert 空間の間の線形作用素に対応する Möbius gyrovector space 間の写像のあ
るクラスとして, 次が考えられる. U1,V1 を 2つの Möbius gyrovector spaces, f : U1 → V1を写像
とする. ある線形作用素 T : U → Vが存在して任意の x, y ∈ Uと r ∈ Rに対して

fs(x⊕s y) → T (x + y)

fs(x) ⊕s fs(y) → Tx + Ty

fs(r⊗sx) → Trx

r⊗sfs(x) → rTx

as s → ∞ が成り立つ, という性質を有する写像 f たちである. 問題によって, 収束のオーダーに
関する条件を課す必要が生じるだろう.
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Bishop-Phelps-Bollobas property and property β

Department of Mathematics, Niigata University Yuta Enami

1 Introduction

This is an introduction of a paper [2] by Acosta, Aron, Garćıa and Maestre and recent results.
This is not my research result.

Given a Banach space X, we will use the following notation:

• BX := {x ∈ X : ∥x∥ ≤ 1}, the closed unit ball of X,

• SX := {x ∈ X : ∥x∥ = 1}, the unit sphere of X,

• X∗ : the (topological) dual space of X.

A bounded linear functional x∗ ∈ X∗ is said to be norm-attaining if there is an x ∈ SX such
that |x∗(x)| = ∥x∗∥. It is well-known that every bounded linear functional on a reflexive Banach
space must be norm-attaining. The converse is also true in the following sense.

If X is a Banach space and every bounded linear functional x∗ on X is norm-attaining, then
X is reflexive.

James proved the above result for separable Banach spaces in [8], and he generalized it to
arbitrary Banach spaces in [9]

After James [8], Phelps began to study norm-attaining functionals on non-reflexive Banach
spaces. The following theorem is so-called the Bishop-Phelps subreflexivity theorem that proved
by Bishop and Phelps in [5].

Theorem 1. For any Banach space X, the set of all norm-attaining members in X∗ is dense in
the dual space X∗ of X.

Bollobás in [6] investigated a generalization of the Bishop-Phelps subreflexivity theorem and
proved so-called the Bishop-Phelps-Bollobás theorem that is stated as follows.

Theorem 2. Let X be a Banach space and 0 < ε < 1/2. Given x∗ ∈ SX∗ and x ∈ SX with
|x∗(x) − 1| ≤ ε2/2, then there exist y∗ ∈ SX∗ and y ∈ SX such that y∗(y) = 1, ∥y − x∥ < ε + ε2

and ∥y∗ − x∗∥ ≤ ε.
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2 A main result in [2]

Let us consider when a Bishop-Phelps-Bollobás type theorem holds in the vector-valued case.
For real or complex Banach spaces X and Y we will denote by L(X,Y ) the Banach space of all
bounded linear operators from X into Y .

Definition 1. Let X and Y be real or complex Banach spaces. We say that the pair (X,Y )
satisfies the Bishop-Phelps-Bollobás property for operators if given ε > 0, there exists δ(ε) > 0
satisfying the following conditions:

for all T ∈ SL(X,Y ) and x ∈ SX with ∥T (x)∥ > 1 − δ(ε), there exist S ∈ SL(X,Y ) and z ∈ SX

such that ∥S(z)∥ = 1, ∥z − x∥ < ε and ∥S − T∥ < ε.

A bounded linear operator T : X → Y will be called norm-attaining if there is an x ∈ SX such
that ∥T (x)∥ = ∥T∥. Note that if the pair (X,Y ) satisfies the Bishop-Phelps-Bollobás property for
operators, then the set of all norm-attaining operators is norm dense in L(X,Y ). Lindenstrauss in
[10] introduced a sufficient condition of a Banach space Y in order that the set of all norm-attaining
operators be dense in L(X, Y ) for every Banach space X, that is stated as follows.

Definition 2. A Banach space Y is said to have the property β if there exist two sets {yα : α ∈
A} ⊂ SY , {y∗α : α ∈ A} ⊂ SY ∗ and 0 ≤ ρ < 1 such that the following conditions hold:

• y∗α(yα) = 1, for all α ∈ A,

• |y∗α(yβ)| ≤ ρ, for all distinct α, β ∈ A,

• ∥y∥ = sup{|y∗α(y)| : α ∈ A}, for all y ∈ Y .

Acosta, Aron, Garćıa and Maestre in [2] proved the following theorem.

Theorem 3. Let X and Y be Banach spaces. If Y has the property β, then the pair (X,Y )
satisfies the Bishop-Phelps-Bollobás property for operators.

Note that Partington in [11] showed that every Banach space can be equivalently renormed to
have the property β.

Theorem 4. Every Banach space has a norm | · | equivalent to the original norm such that (X, | · |)
has the property β.

As a corollary, for any Banach space Y there is a Banach space Z isomorphic to Y such that
(X,Z) satisfies the Bishop-Phelps-Bollobás property for operators for every Banach space X.

Acosta, Aron, Garćıa and Maestre also proved that if X and Y are finite-dimensional Banach
spaces, then the pair (X, Y ) satisfies the Bishop-Phelps-Bollobás property for operators. More
explicitly, the following is true.

Theorem 5. Let X and Y be finite-dimensional Banach spaces. For any ε > 0 there exists δ > 0
such that whenever T ∈ SL(X,Y ) there is R ∈ SL(X,Y ) such that the following conditions hold:

• ∥R− T∥ < ε, and

• for every x ∈ SX with ∥T (x)∥ > 1−δ there is x′ ∈ SX such that ∥R(x′)∥ = 1 and ∥x′−x∥ < ε.
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3 Some recent results

Now let us introduce more concrete examples. Let K be a compact Hausdorff space. The set of
all real-valued continuous functions on K will be denoted by CR(K). CR(K) becomes a Banach
space with the pointwise operations and the supremum norm. The next theorem is proved by
Acosta, Becerra-Guerrero, Choi, Ciesielski, Kim, Lee, Lourenço and Mart́ın in [3].

Theorem 6. Let K1 and K2 be compact Hausdorff spaces. The pair (CR(K1), CR(K2)) satisfies
the Bishop-Phelps-Bollobás property for operators.

Now let C(K) be a Banach space of complex-valued continuous functions on a compact Haus-
dorff space K with supremum norm. Note that it is not known that whether or not (C(K1), C(K2))
satisfies the Bishop-Phelps-Bollobás property for operators for any compact Hausdorff spaces K1

and K2. On the other hand, Cascales, Guirao and Kadets in [7] showed the following theorem.

Theorem 7. Let X be an Asplund space, and let A be a uniform algebra on a compact Hausdorff
space K. Then the pair (X,A) satisfies the Bishop-Phelps-Bollobás property for operators.

Let C0(L) be a Banach space of complex-valued continuous functions on a locally compact
Hausdorff space L which vanish at infinity with supremum norm. It is known that the class of
locally compact Hausdorff space L for which C0(L) is Asplund is very small. In fact, such a locally
compact Hausdorff space must be scattered, that is, L contains no non-empty perfect subset (see
after Corollary 2.6 in [4], and [12]).

A Banach space Y is complex uniformly convex if

inf{sup{∥x+ λεy∥ − 1 : λ ∈ C, |λ| = 1} : x, y ∈ SY } > 0

for every ε > 0. Acosta in [1] showed the following theorem.

Theorem 8. The pair (C0(L), Y ) satisfies the Bishop-Phelps-Bollobás property for operators for
any locally compact Hausdorff space L and any complex uniformly convex Banach space Y .

4 Problems

Finally, let us introduce some problems in which I am interested.

Question. Let L,L1, L2 be locally compact Hausdorff spaces.

• Characterize L such that (X,C0(L)) satisfies the Bishop-Phelps-Bollobás property for oper-
ators for every Banach space X.

• Give a necessary and sufficient condition of L in order that the set of norm-attaining oper-
ators from X into C0(L) be dense in L(X,C0(L)) for every Banach space X.

• Does the pair (C0(L1), C0(L2)) satisfy the Bishop-Phelps-Bollobás property for operators?

• Does the pair (A, Y ) satisfy the Bishop-Phelps-Bollobás property for operators for any func-
tion algebra on L and any complex uniformly convex Banach space Y ?
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[2] M. D. Acosta, R. M. Aron, D. Garćıa, M. Maestre, Bishop-Phelps-Bollobás theorem for oper-
ators, J. Funct. Anal. 254 (2008), 2780-2799.

[3] M. D. Acosta, J. Becerra-Guerrero, Y. S. Choi, M. Ciesielski, S. K. Kim, H.J. Lee, M, L,
Lourenço, M. Mart́ın, The Bishop-Phelps-Bollobás property for operators between spaces of
continuous functions, Nonlinear Anal. 95 (2014), 323-332.

[4] R. M. Aron, B. Cascales, O. Kozhushkina, The Bishop-Phelps-Bollobás theorem and Asplund
operators, Proc. Amer. Math. Soc. 139 (10) (2011), 3553-3560.

[5] E. Bishop, R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math.
Soc. 67 (1961), 97-98.

[6] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2
(1970), 181-182.

[7] B. Cascales, A. J. Guirao, V. Kadets, A Bishop-Phelps-Bollobás type theorem for uniform
algebras, Adv. Math. 240 (2013), 370-382.

[8] R. C. James, Reflexivity and the supremum of linear functionals, Ann. of Math. (2) 66 (1957),
159-169.

[9] R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 129-140.

[10] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.

[11] J. R. Partington, Norm attaining operators, Israel J. Math. 43 (1982), 273-276.
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Linear isometries of Sp, an introduction of a
paper by Novinger and Oberlin

Department of Mathematics, Niigata University Yoshiaki Suzuki

This is an introduction of some results in a paper by Novinger and Oberlin [3].

Let D be the open unit disc {z ∈ C : |z| < 1} and T be the unit circle {z ∈ C : |z| = 1}. For

1 ≤ p <∞ let Hp be the class of analytic functions f on D such that

∥f∥p := sup
0≤r<1

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

<∞,

we call this norm ∥ · ∥p Hp norm. Let H∞ be the class of all bounded analytic functions on D
with the supremum norm. Let Sp be the class of analytic functions f on D such that f ′ ∈ Hp for

1 ≤ p <∞. We consider the following norms on Sp:

∥f∥0 = |f(0)| + ∥f ′∥p ,

∥f∥Σ = ∥f∥∞ + ∥f ′∥p ,

where ∥f∥∞ = sup{|f(z)| : z ∈ D}.

The linear isometries of spaces of analytic functions heve been studied since the 1960’s. deLeeuw,

Rudin, and Wermer [1] obtained the form of the isometries for H∞ and H1.

Theorem 1 (deLeeuw, Rudin and Wermer, 1960) If T is a linear isometry of H∞ onto

H∞, then there exists λ ∈ C with |λ| = 1 and a conformal map ϕ on D onto itself such that

Tf(z) = λf(ϕ(z))

for all f ∈ H∞ and z ∈ D.

Theorem 2 (deLeeuw, Rudin and Wermer, 1960) If T is a linear isometry of H1 onto H1, then

there exists λ ∈ C with |λ| = 1 and a conformal map ϕ on D onto itself such that

Tf(z) = λϕ′(z)f(ϕ(z))

for all f ∈ H1 and z ∈ D.

Their theorems were extended to Hp for 1 ≤ p <∞, p ̸= 2 by Forelli [2].

12



Theorem 3 (Forelli, 1964) Suppose that 1 ≤ p < ∞, p ̸= 2. If T is a linear isometry of Hp

into Hp, then there is a non-constant inner function ϕ ∈ H∞ and a function F ∈ Hp such that

Tf(z) = F (z)f(ϕ(z))

for all f ∈ Hp and z ∈ D.

Remark. In this theorem, F and ϕ are related.

If a linear isometry T : Hp −→ Hp is surjective, then T comes from only a conformal map.

Theorem 4 (Forelli, 1964) Suppose that 1 ≤ p < ∞, p ̸= 2. If T is a linear isometry of Hp

onto Hp, then there is λ ∈ C with |λ| = 1 and a conformal map ϕ of D onto itself such that

Tf(z) = λ(ϕ′(z))
1
pf(ϕ(z))

for all f ∈ Hp and z ∈ D.

Novinger and Oberlin [3] deterimined linear isometries on Sp with respect to ∥ · ∥0 and ∥ · ∥Σ.

Theorem 5 (Novinger and Oberlin, 1985) If T is a linear isometry of Sp into Sp with respect

to

∥f∥0 = |f(0)| + ∥f ′∥p,

then there exists λ ∈ C with |λ| = 1 and a linear isometry U of Hp into Hp such that

Tf(z) = λ

(
f(0) +

∫ z

0

Uf ′(ζ)dζ

)
for all f ∈ Sp and z ∈ D.

Sketch of proof. Let n ∈ N, t ∈ R and Zn(z) = zn (z ∈ D). Consider ∥T (1 + tZn)∥0 =

∥T1(0) + tTZn(0)| + ∥(T1)′ + t(TZn)′∥p. Then we have

∥(T1)′ + t(TZn)′∥p = ∥(T1)′∥p + |t|∥(TZn)′∥p.

We see that T1 is a constant function with |T1| = 1. We may suppose that T1 = 1. Since T is a

linear isometry,

∥1 + t(f − f(0))∥0 = ∥T1 + tT (f − f(0))∥0.

Then, it follows that

1 + |t|(∥f ′∥p − ∥(Tf)′∥p) = |1 + t(Tf(0) − f(0))|,

for all t ∈ R. Hence

Tf(0) = f(0).
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Let Sp
0 = {f ∈ Sp : f(0) = 0}. Let D : Sp

0 −→ Hp, Df = f ′, then D is a linear isometry, and let

I be the inverse of D, given by

Ig(z) =

∫ z

0

g(ζ)dζ (g ∈ Hp).

Since T1 = 1 and Tf(0) = f(0), then T (f − f(0)) = Tf − Tf(0) and thus

T (If ′) = I((Tf)′).

Therefore

D ◦ T ◦ I(f ′) = D ◦ I(Tf)′ = (Tf)′.

Let U = D ◦ T ◦ I, then Uf ′ = (Tf)′. Hence

Tf(z) = f(0) +

∫ z

0

Uf ′(ζ)dζ

for all z ∈ D. �
Using Forelli’s theorems, we obtain the following corollaries.

Corollary 1 (Novinger and Oberlin, 1985) Suppose that 1 ≤ p <∞, p ̸= 2. If T is a linear

isometry of Sp into Sp with respect to

∥f∥0 = |f(0)| + ∥f ′∥p ,

then there is a non-constant inner function ϕ and a function F ∈ Hp such that

Tf(z) = λ

(
f(0) +

∫ z

0

F (ζ)f ′(ϕ(ζ))dζ

)
for all f ∈ Sp and z ∈ D.

Corollary 2 (Novinger and Oberlin, 1985) Suppose that 1 ≤ p <∞, p ̸= 2. If T is a linear

isometry of Sp onto Sp with respect to

∥f∥0 = |f(0)| + ∥f ′∥p ,

then there are λ1, λ2 ∈ C with |λ1| = |λ2| = 1 and a conformal map ϕ of D onto D such that

Tf(z) = λ1

(
f(0) + λ2

∫ z

0

(ϕ′(ζ))
1
pf ′(ϕ(ζ))dζ

)
for all f ∈ Sp and z ∈ D.

Theorem 6 (Novinger and Oberlin, 1985) If T is a linear isometry of Sp into Sp with respect

to

∥f∥Σ = ∥f∥∞ + ∥f ′∥p ,

then there exists λ ∈ C with |λ| = 1 and a conformal map ϕ of D onto D such that

Tf(z) = λf(ϕ(z))

for all f ∈ Sp and z ∈ D. If 1 < p <∞, ϕ is necessarly a rotation of D.
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Sketch of proof. Similarly, consider ∥T (1 + wZn)∥Σ = ∥T1 + wTZn∥∞ + ∥(T1)′ + w(TZn)′∥p
(n ∈ N, w ∈ C). We have

∥T1 + wTZn∥∞ = ∥T1∥∞ + |w|∥TZn∥∞, (1)

∥(T1)′ + w(TZn)′∥p = ∥(T1)′∥p + |w|∥(TZn)′∥p. (2)

We see that T1 is a constant function of modulus one by (2) as before. So we can suppose that

T1 = 1. We may assume that T1 = 1. Then, ∥1 +wTZ∥∞ = 1 + |w|∥TZ∥∞ by (1). We can prove

that TZ(T) contains {z ∈ C : |z| = ∥TZ∥∞}. We see that

1 = ∥TZ∥∞ = ∥(TZ)′∥1 = ∥(TZ)′∥p.

Thus TZ is a conformal map on D onto itself. And if p > 1, TZ is a rotation of D. Let

T1 : Sp −→ Sp be defined by

T1f = Tf ◦ (TZ)−1 (f ∈ Sp),

then T1 is an isometry of Sp. Now it follows that

T11 = T1 ◦ (TZ)−1 = 1,

T1Z = TZ ◦ (TZ)−1 = Z.

Therefore we can prove that

T1Z
n = Zn

for all n ∈ N. Since the polynomials are dense in Sp, we have

T1f = f

for all f ∈ Sp. Thus from this it follows that

f = T1f = Tf ◦ (TZ)−1

so that

Tf = f ◦ TZ.

Hence let ϕ = TZ, then Tf = f ◦ ϕ. �
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Isometries on C1-spaces of C(X)-valued
functions

Department of Mathematics, Niigata University Takeshi Miura

1 Introduction

Let (M, ∥ · ∥M) and (N, ∥ · ∥N) be normed linear spaces over the complex number field C. A

mapping S : M → N is said to be an isometry if and only if

∥S(f) − S(g)∥N = ∥f − g∥M (f, g ∈M).

Let F be the real or complex number field. We denote by CF(K) the Banach space of all con-

tinuous F-valued functions on a compact Hausdorff space K with point wise operations and the

supremum norm ∥f∥K = supt∈K |f(t)| for f ∈ CF(K). For simplicity, we will write C(K) in-

stead of CC(K). Banach [1] gave the characterization of surjective isometries between CR(X)

and CR(Y ) for compact metric spaces X and Y , where R is the real number field. Stone [11]

generalized the result by Banach to compact Hausdorff spaces X and Y . Their results are well-

known as the Banach-Stone theorem. Jerison [6] investigated surjective linear isometries between

Banach spaces of vector-valued continuous maps on a compact Hausdorff space. Since then, isome-

tries on vector-valued function spaces have been studied extensively. For example, Botelho and

Jamison [2] consider E-valued C1 function space C1([0, 1], E) for a Hilbert space E. For a finite

dimensional E, they characterize surjective linear isometry on C1([0, 1], E) with respect to a norm

supt∈[0,1](∥f(t)∥E + ∥f ′(t)∥E). In particular, if E = C, then the corresponding result was obtained

by Cambern [3]. Rao and Roy [10] proved a quite similar result to the theorem by Cambern

with another norm. The purpose of this note is to characterize surjective linear isometries on

C1([0, 1], A) for a uniform algebra A with an additional assumption.

2 Main result

Let A be a uniform algebra on a compact Hausdorff space X with the supremum norm ∥ · ∥X ,

that is, A is a uniformly closed subalgebra of C(X) that contains constants and separates points

of X in the following sense; for each x, y ∈ X with x ̸= y there exists f ∈ A such that f(x) ̸= f(y).

Let A∗ be the dual space of A, and let A∗
1 be the closed unit ball of A∗. For each x ∈ X, the

functional δx ∈ A∗ is defined by δx(f) = f(x) for f ∈ A. A functional η ∈ A∗
1 is an extreme
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point if and only if η = (ξ + ζ)/2 for ξ, ζ ∈ A∗
1 implies that ξ = ζ. Denote by Ext(A∗

1) the set of

all extreme points of A∗
1. We define Ch(A) by the set of all x ∈ X such that δx ∈ Ext(A∗

1). It

is well-known that the closure of Ch(A) in X is the Shilov boundary for A, that is, the smallest

closed boundary for A. We denote by ∂A the Shilov boundary for A.

A map F : [0, 1] → A is said to be differentiable if there exists a map F ′ : [0, 1] → A with

lim
h→0

∥∥∥∥F (t+ h) − F (t)

h
− F ′(t)

∥∥∥∥
X

= 0

for all t ∈ [0, 1]; for t = 0, 1, the above limit means right hand and left hand one-sided limit,

respectively. We denote by C1([0, 1], A) the set of all differentiable map F : [0, 1] → A such that

F ′ : [0, 1] → A is continuous on [0, 1]. There are a lot of norms on C1([0, 1], A). In fact, let D be

a compact connected subset of [0, 1] × [0, 1]. Then the quantity

∥F∥⟨D⟩ = sup
(t1,t2)∈D

(∥F (t1)∥X + ∥F ′(t2)∥X)

is a norm for F ∈ C1([0, 1], A) provided that p1(D) ∪ p2(D) = [0, 1], where pj is the projection to

the j-th coordinate of [0, 1] × [0, 1] for j = 1, 2.

Now we are ready to state the main result of this paper. We characterize surjective complex

linear isometries on (C1([0, 1], A), ∥ · ∥⟨D⟩). Roughly speaking, such isometries are represented by

weighted composition operators.

Theorem. Let A be a uniform algebra on a compact Hausdorff space X with an additional property

that Ch(A) = ∂A. Let D be a compact connected subset of [0, 1]× [0, 1] satisfying p1(D) = p2(D) =

[0, 1]. If S : C1([0, 1], A) → C1([0, 1], A) is a surjective, complex linear isometry with respect to

∥ · ∥⟨D⟩, then there exist β ∈ A with |β| = 1 on Ch(A), a homeomorphism ψ1 : Ch(A) → Ch(A)

and a closed and open subsets X−1, X1 of Ch(A) with X−1 ∪X1 = Ch(A) and X−1 ∩X1 = ∅ such

that

S(F )(t)(x) = β(x)F (φ1(t, x))(ψ1(x)) (F ∈ C1([0, 1], A), t ∈ [0, 1]),

where φ1 is defined by

φ1(t, x) =

{
t if x ∈ X1

1 − t if x ∈ X−1

(t ∈ [0, 1]).

Conversely, if β, Xj (j = ±1), ψ1 and φ1 satisfy the properties above, then S of the above form

is a complex linear isometry on C1([0, 1], A) with respect to ∥ · ∥⟨D⟩.

Note that Dirichlet algebras A satisfy the assumption that Ch(A) = ∂A in the above theorem.

Here, we give outline of proof of the theorem.

Outline of proof. We first embed (C1([0, 1], A), ∥·∥⟨D⟩) into (C(D̃), ∥·∥D̃), where D̃ = D×Ch(A)×
Ch(A) × T and T = {z ∈ C : |z| = 1}. In fact, for each F ∈ C1([0, 1], A) we define F̃ : D̃ → C by

F̃ (t1, t2, x1, x2, z) = F (t1)(x1) + zF ′(t2)(x2) ((t1, t2, x1, x2, z) ∈ D̃).
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By the definition, we observe that F 7→ F̃ is a complex linear isometry from (C1([0, 1], A), ∥ · ∥⟨D⟩)

into (C(D̃), ∥ · ∥D̃). Let

U(F ) = F̃ for F ∈ C1([0, 1], A),

and we define

B = {F̃ ∈ C(D̃) : F ∈ C1([0, 1], A)}.

Then U : (C1([0, 1], A), ∥ · ∥⟨D⟩) → (B, ∥ · ∥D̃) is a surjective, complex linear isometry.

We define T : (B, ∥ · ∥D̃) → (B, ∥ · ∥D̃) by T = USU−1.

C1([0, 1], A)
S−−−→ C1([0, 1], A)

U

y yU

B −−−→
T

B

Then T is a surjective complex linear isometry on B with respect to the supremum norm ∥ · ∥D̃
on the compact Hausdorff space D̃. By a quite similar arguments to [7, Lemma 1.6] and [10,

Lemma 3.1], we can show that Ch(B) = D̃. By the Arens-Kelly theorem (cf. [4, Corollary 2.3.6]),

we see that Ext(B∗
1) = {λδq : λ ∈ T, q ∈ D̃}. Let T ∗ : B∗ → B∗ be the adjoint of T . Since T is

a surjective linear isometry, so is T ∗ with respect to the operator norm. It is easy to see that T ∗

preserves extreme points of B∗
1 , that is, T ∗(Ext(B∗

1)) = Ext(B∗
1). This implies that for each q ∈ D̃

there exist α(q) ∈ T and Φ(q) ∈ D̃ such that T ∗(δq) = α(q)δΦ(q). By the definition of D̃, there

exist maps φ1, φ2 : D̃ → [0, 1], ψ1, ψ2 : D̃ → Ch(A) and w : D̃ → T such that (φ1(q), φ2(q)) ∈ D

and Φ(q) = (φ1(q), φ2(q), ψ1(q), ψ2(q), w(q)) for all q ∈ D̃. It follows that

T (F̃ )(q) = T ∗(δq)(F̃ ) = α(q)δΦ(q)(F̃ ) = α(q)F̃ (Φ(q))

for all F̃ ∈ B and q ∈ D̃. Since T = USU−1 and U(F ) = F̃ for F ∈ C1([0, 1], A), we obtain

S̃(F ) = USU−1(U(F )) = T (F̃ ) and hence S̃(F )(q) = α(q)F̃ (Φ(q)). By the definition of ·̃, we have

S(F )(t1)(x1) + zS(F )′(t2)(x2) = α(q)[F (φ1(q)(ψ1(q)) + w(q)F ′(φ2(q))(ψ2(q))]

for all q = (t1, t2, x1, x2, z) ∈ D̃.

Now we need some calculation to show that α is independent of variables t1, t2, x2 and z.

Moreover, there exists β ∈ A such that β(x1) = α(t1, t2, x1, x2, z) for all (t1, t2, x1, x2, z) ∈ D̃. We

can also prove that φ1 does not depend on variables t2, x2 and z, and thus we may write φ1(t1, x1)

instead of φ1(t1, t2, x1, x2, z). Then, by some calculation, we can show that

S(F )(t1)(x1) = β(x1)F (φ1(t1, x1))(ψ1(t1, x1))

for all F ∈ C1([0, 1], A), t1 ∈ [0, 1] and x1 ∈ Ch(A). We need to prove that the map ψ1(t, x) is

constant with respect to a variable t. To do this, we need ideas by Hatori, Oi and Takagi [5] and

Oi [9].
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Remark. We considered the case when p1(D) = p2(D) = [0, 1] in the main theorem. We need to

consider a general case when p1(D) = [a, b] ⊂ [0, 1]. In particular, if, in addition, a = b in the

case, I am not sure whether S(1)′(t)(x) = 0 holds for t ∈ [0, 1] and x ∈ Ch(A), where 1 is the

constant function with the value 1. In fact, the equality plays an important role in proof of the

main theorem.

Acknowledgement. Professor Hatori noticed that one can prove that the representation of a

surjective complex linear isometry S holds not only on Ch(A) but also on the maximal ideal space

MA of A. He also mentioned that the assumption that Ch(A) = ∂A in the main theorem is

unnecessary. I would like to thank Professor Hatori for his valuable comments and suggestions.
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Derivatives of Blaschke products in Bergman
spaces induced by doubling weights

Atte Reijonen, Tohoku University

1 Introduction and main result

Let HpDq be the space of all analytic functions in the open unit disc D of the complex plane. A
function ω : D Ñ r0,8q is called a (radial) weight if it is integrable over D and ωpzq � ωp|z|q
for all z P D. For 0   p   8 and a weight ω, the weighted Bergman space Ap

ω consists of those
f P HpDq such that

}f}p
Ap

ω
�

»
D
|fpzq|pωpzq dApzq   8,

where dApzq is the Lebesgue area measure on D. If ωpzq � p1� |z|qα for some �1   α   8, then
we use the notation Ap

α for Ap
ω.

Class D offers us a sufficient ballpark [10, 11]: A radial weight ω belongs to D if and only if
there exist C � Cpωq ¥ 1, α � αpωq ¡ 0 and β � βpωq ¥ α such that

C�1

�
1 � r

1 � s


α pωpsq ¤ pωprq ¤ C

�
1 � r

1 � s


β pωpsq, 0 ¤ r ¤ s   1,

where

pωpzq � » 1

|z|

ωptq dt, z P D.

Moreover, two subclasses are needed:

 A weight ω belongs to pDp for 0   p   8 if

sup
0 r 1

p1 � rqppωprq
» r

0

ωpsq

p1 � sqp
ds   8.

 A weight ω belongs to qDp for 0   p   8 if

sup
0 r 1

p1 � rqppωprq
» 1

r

ωpsq

p1 � sqp
ds   8.

For a given sequence tznu � D satisfying
°

np1 � |zn|q   8, the Blaschke product with zeros
tznu is defined by

Bpzq �
¹
n

|zn|

zn

zn � z

1 � znz
, z P D.

20



Here we use the interpretation |zn|{zn � 1 for zn � 0. We study conditions guaranteeing that
the derivative of a Blaschke product belongs to the Bergman space Ap

ω. More precisely, we give
an alternative proof for the essential content of [13, Theorem 1]. Earlier this subject has been
studied, for instance, in [1, 2, 3, 5, 6, 7, 8]. See also monographs [4, 9].

Recall that a sequence tznu � D is separated if

inf
n�k

���� zn � zk
1 � znzk

���� ¡ 0.

Now we are ready to state our main result, which is a combination of [13, Theorem 1 and Corol-
lary 4].

Theorem 1 Let 1
2
  p   8, ω P pDp and B be the Blaschke product with zeros tznu.

piq If either 1
2
  p ¤ 1 and ω P pD2p�1, or 1   p   8 and ω P qDp�1, then

}B1}p
Ap

ω
À
¸
n

pωpznq
p1 � |zn|qp�1

.

piiq If ω P D and tznu is a finite union of separated sequences, then

}B1}p
Ap

ω
Á
¸
n

pωpznq
p1 � |zn|qp�1

.

The next section consists of the proof of Theorem 1. In particular, we concentrate on case (ii).

2 Proof of Theorem 1

Let 1
2
  p ¤ 1. Calculating the logarithmic derivative of B, it is easy to deduce

|B1pzq| ¤
¸
n

1 � |zn|
2

|1 � znz|2
.

Hence the Forelli-Rudin and some standard estimates together with the hypotheses of ω give

}B1}p
Ap

ω
¤
¸
n

p1 � |zn|
2qp
»
D

ωpzq

|1 � znz|2p
dApzq

�
¸
n

p1 � |zn|q
p

» 1

0

ωprq

p|1 � |zn|rq2p�1
dr À

¸
n

pωpznq
p1� |zn|qp�1

.

For p ¥ 1, the Schwarz-Pick lemma and a similar deduction as in the case p � 1 yield»
D
|B1pzq|pωpzq dApzq ¤

»
D
|B1pzq|

ωpzq

p1 � |z|qp�1
dApzq À

¸
n

pωpznq
p1 � |zn|qp�1

.

Hence assertion (i) is proved.
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Since tznu is a finite union of separated sequences, we find a constant δ P p0, 1q such that the
number of zeros in each ∆pznq � tz P D : |zn � z|   δp1� |zn|qu is uniformly bounded. Moreover,

|Bpzq| ¤
|z � zn|

|1 � znz|
¤
|z � zn|

1 � |zn|
  δ, z P ∆pznq.

Hence, using the hypothesis ω P D, we obtain

¸
n

pωpznq
p1 � |zn|qp�1

�
¸
n

»
∆pznq

p1 � |Bpzq|qp dApzq
pωpznq

p1 � |zn|qp�1

�
¸
n

»
∆pznq

p1 � |Bpzq|qp
pωpzq

p1� |z|qp�1
dApzq

À

»
D

�
1 � |Bpzq|

1 � |z|


p pωpzq
1 � |z|

dApzq.

Finally assertion (ii) follows from [12, Theorem 1] and the fact that, for 0   p   8 and ω P D,

}f}p
Ap

ω
�

»
D
|fpzq|p

pωpzq
1 � |z|

dApzq, f P HpDq.

This asymptotic equation can be proved by observing that

pωprq � » 1

r

pωpsq
1 � s

ds, 0 ¤ r   1,

and integrating by parts [14]. This completes the proof.
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where Mp(X) (0 < p < ∞) are F -algebras which consist of holomorphic functions defined by
maximal functions.
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1. Introduction

Let n be a positive integer. The space of n-complex variables z = (z1, . . . , zn) is denoted by Cn.
The unit polydisk {z ∈ Cn : |zj| < 1, 1 ≤ j ≤ n} is denoted by Un and the distinguished boundary
Tn is {ζ ∈ Cn : |ζj| = 1, 1 ≤ j ≤ n}. The unit ball {z ∈ Cn :

∑n
j=1 |zj|2 < 1} is denoted by Bn

and Sn = {ζ ∈ Cn :
∑n

j=1 |ζj|2 = 1} is its boundary. In this paper X denotes the unit polydisk

or the unit ball for n ≥ 1 and ∂X denotes Tn for X = Un or Sn for X = Bn. The normalized (in
the sense that σ(∂X) = 1) Lebesgue measure on ∂X is denoted by dσ.

The Hardy space on X is denoted by Hq(X) (0 < q ≤ ∞). The Nevanlinna class N(X) on X
is defined as the set of all holomorphic functions f on X such that

sup
0≤r<1

∫
∂X

log+ |f(rζ)| dσ(ζ) <∞

holds. It is known that f ∈ N(X) has a finite nontangential limit, denoted by f ∗, almost every-
where on ∂X.

The Smirnov class N∗(X) is defined as the set of all f ∈ N(X) which satisfy the equality

sup
0≤r<1

∫
∂X

log+ |f(rζ)| dσ(ζ) =

∫
∂X

log+ |f ∗(ζ)| dσ(ζ).

Define a metric

dN∗(X)(f, g) =

∫
∂X

log(1 + |f ∗(ζ) − g∗(ζ)|) dσ(ζ)

for f, g ∈ N∗(X). With the metric dN∗(X)(·, ·) N∗(X) is an F -algebra. Recall that an F -algebra
is a topological algebra in which the topology arises from a complete metric.

The Privalov class Np(X), 1 < p < ∞, is defined as the set of all holomorphic functions f on
X such that

sup
0≤r<1

∫
∂X

(
log+ |f(rζ)|

)p
dσ(ζ) <∞
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holds. It is well-known that Np(X) is a subalgebra of N∗(X), hence every f ∈ Np(X) has a finite
nontangential limit almost everywhere on ∂X. Under the metric defined by

dNp(X)(f, g) =

(∫
∂X

(log(1 + |f ∗(ζ) − g∗(ζ)|))p dσ(ζ)

) 1
p

for f, g ∈ Np(X), Np(X) becomes an F -algebra (cf. [7]).
Now we define the class Mp(X). For 0 < p < ∞, the class Mp(X) is defined as the set of all

holomorphic functions f on X such that∫
∂X

(
log+Mf(ζ)

)p
dσ(ζ) <∞,

where Mf(ζ) := sup
0≤r<1

|f(rζ)| is the maximal function. The class Mp(X) with p = 1 in the case

n = 1 was introduced by Kim in [4]. As for p > 0 and n ≥ 1, the class was considered in [1, 5].
For f, g ∈Mp(X), define a metric

dMp(X)(f, g) =

{∫
∂X

(log(1 +M(f − g)(ζ)))p dσ(ζ)

}αp
p

,

where αp = min(1, p). With this metric Mp(X) is also an F -algebra (see [2]).
It is well-known that the following inclusion relations hold:

Hq(X) ( Np(X) (M1(X) ( N∗(X) (0 < q ≤ ∞ , p > 1).

Moreover, it is known that N(X) (Mp(X) (0 < p < 1) [8].
A subset L of a linear topological space A is said to be bounded if for any neighborhood U of

zero in A there exists a real number α , 0 < α < 1, such that αL = {αf ; f ∈ L} ⊂ U . Yanagihara
characterized bounded subsets of N∗(X) in the case n = 1 [9]. As for Mp(X) with p = 1 in the
case n = 1, Kim described some characterizations of boundedness (see [4]). For p > 1 and n = 1,
these characterizations were considered by Meštrović [6]. As for Np(X) with p > 1 in the case
n ≥ 1, Subbotin investigated the properties of boundedness [7].

In this paper, we consider some characterizations of boundedness in Mp(X) with 0 < p <∞ in
the case n ≥ 1.

2. The results

Theorem 2.1. ([3]) Let 0 < p <∞. L ⊂Mp(X) is bounded if and only if
(i) there exists a K <∞ such that∫

∂X

(
log+Mf(ζ)

)p
dσ(ζ) < K

for all f ∈ L;
(ii) for each ε > 0 there exists δ > 0 such that∫

E

(
log+Mf(ζ)

)p
dσ(ζ) < ε, for all f ∈ L,

for any measurable set E ⊂ ∂X with the Lebesgue measure |E| < δ.

Proof. Necessity. Let L be a bounded subset of Mp(X). We put βp = max(1, p) = p/αp.
(i) For any η > 0, there is a number α0 = α0(η) (0 < α0 < 1) such that(

dMp(X)(αf, 0)
)βp

=

∫
∂X

(log(1 + |α|Mf(ζ)))p dσ(ζ) < ηβp
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for all f ∈ L and |α| ≤ α0. It follows that∫
∂X

(
log+ |α|Mf(ζ)

)p
dσ(ζ) < ηβp

for all f ∈ L and |α| ≤ α0. Since

log+Mf ≤ log+ α0Mf + log
1

α0

,

using the elementary inequality

(2.1) (a+ b)p ≤ 2p(ap + bp) (a ≥ 0 , b ≥ 0 , p > 0),

we have ∫
∂X

(
log+Mf(ζ)

)p
dσ(ζ)

≤ 2p

(∫
∂X

(
log+ α0Mf(ζ)

)p
dσ(ζ) +

∫
∂X

(
log

1

α0

)p

dσ(ζ)

)
= 2p

(
ηβp +

(
log

1

α0

)p)
= K = constant.

Thus (i) is satisfied.

(ii) For given ε > 0, we take η as η < (ε/2p+1)
1
βp and α0 = α0(η) as above. Next take δ > 0

such that

δ

(
log

1

α0

)p

<
ε

2p+1
.

Then for each set E ⊂ ∂X with |E| < δ and for every f ∈ L, we obtain∫
E

(
log+Mf(ζ)

)p
dσ(ζ)

≤ 2p

(∫
E

(
log+ α0Mf(ζ)

)p
dσ(ζ) +

∫
E

(
log

1

α0

)p

dσ(ζ)

)
≤ 2pηβp + 2p|E|

(
log

1

α0

)p

<
ε

2
+
ε

2
< ε.

Therefore, the condition (ii) is satisfied.
Sufficiency. Let

V = {g ∈Mp(X) ; dMp(X)(g , 0) < η}
be a neighborhood of 0 in Mp(X). Take ε > 0 such that

(log(1 + ε))p + 2p(log 2)pε+ 2pε < ηβp .

Then, there is a δ (0 < δ < ε) such that (ii) is satisfied. For f ∈ L, we can find an Ef ⊂ ∂X so
that

|∂X\Ef | < δ,
(
log+Mf(ζ)

)p ≤ K

δ
on Ef

by Chebyshev’s inequality. We have

Mf(ζ) ≤ exp

(
K

δ

) 1
p

= A(δ) = A on Ef .
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Choose α such that 0 < α < ε/A. Then, using the inequality (2.1) and

log(1 + x) ≤ log 2 + log+ x (x > 0),

we obtain, for every f ∈ L,(
dMp(X)(αf, 0)

)βp

=

∫
∂X

(log(1 + |α|Mf(ζ)))p dσ(ζ)

=

∫
Ef

+

∫
∂X\Ef

≤
∫
Ef

(log(1 + ε))p dσ(ζ)

+2p

(∫
∂X\Ef

(log 2)p dσ(ζ) +

∫
∂X\Ef

(
log+Mf(ζ)

)p
dσ(ζ)

)
≤ (log(1 + ε))p + 2p(log 2)pδ + 2pε

< ηβp .

Therefore we get dMp(X)(αf, 0) < η, which shows L is a bounded subset of Mp(X).
The proof of the theorem is complete.

�
Next we show a standard example of a bounded set of Mp(X). The following theorem is easily

proved in the same way of [4, Theorem 4.6] and [7, p.236]; therefore, we do not prove it here.

Theorem 2.2. ([3]) Let 0 < p < ∞. If f ∈ Mp(X), then fρ(z) = f(ρz) (z ∈ X , 0 ≤ ρ < 1)
form a bounded set in Mp(X).

Let p > 1 and we set |f |Np(X) := dNp(X)(f , 0). Subbotin proved an equivalent condition that a
subset L ⊂ Np(X) (1 < p <∞) is bounded. The following is a theorem by Subbotin:

Theorem 2.3. ([7]) Let p > 1. A subset L ⊂ Np(X) is bounded if and only if the following two
conditions are satisfied:

(i) there exists a K <∞ such that |f |Np(X) ≤ K for all f ∈ L;
(ii) for each ε > 0 there exists δ > 0 such that∫

E

(
log+ |f ∗(ζ)|

)p
dσ(ζ) < ε, for all f ∈ L,

for any measurable set E ⊂ ∂X with the Lebesgue measure |E| < δ.

As shown in [1, 7], for any p > 1 the class Mp(X) coincides with the class Np(X) and the
metrics dMp(X) and dNp(X) are equivalent. Therefore the topologies induced by these metrics are
identical on the set Mp(X) = Np(X).

The following theorem is clear; therefore the proof may be omitted.

Theorem 2.4. ([3]) Let p > 1. A subset L ⊂ Mp(X) is bounded if and only if the following two
conditions are satisfied:

(i) there exists a K <∞ such that∫
∂X

(
log+ |f ∗(ζ)|

)p
dσ(ζ) < K
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for all f ∈ L;
(ii) for each ε > 0 there exists δ > 0 such that∫

E

(
log+ |f ∗(ζ)|

)p
dσ(ζ) < ε, for all f ∈ L,

for any measurable set E ⊂ ∂X with the Lebesgue measure |E| < δ.
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[6] R. Meštrović, ”On F -algebras Mp (1 < p < ∞) of holomorphic functions,” The Scientific World Journal,

vol.2014, 10 pages, Article ID: 901726, 2014.
[7] A. V. Subbotin, ”Functional properties of Privalov spaces of holomorphic functions in several variables,” Math.

Notes., vol.65, no.2, pp.230-237, 1999.
[8] A. V. Subbotin, ”Groups of linear isometries of spaces Mq of holomorphic functions of several complex vari-

ables,” Math. Notes., vol.83, no.3, pp.437-440, 2008.
[9] N. Yanagihara, ”Bounded subsets of some spaces of holomorphic functions,” Sci. Pap. Coll. Gen. Ed., Univ.

Tokyo, vol.23, pp.19-28, 1973.

28



Higher-dimensional non-amenability of Lipschitz
algebras over compact metric spaces

Institute of Mathematics, University of Tsukuba
Kazuhiro Kawamura

We report our recent results ([5], [6]) on the Hochschild cohomologies (see [2] and [3]) of algebras

of Lipschitz functions over compact metric spaces. For a compact metric space (M,d), let LipM

be the Banach algebra of all complex-valued Lipschitz functions f : M → C with the norm

∥f∥L = ∥f∥∞ + L(f)

where ∥f∥∞ = supp∈M |f(p)| and L(f) denotes the Lipschitz constant L(f) of f :

L(f) = sup

{
|f(x) − f(y)|

d(x, y)
| x, y ∈ X, x ̸= y

}
.

Let M̃ = M ×M \ ∆M and let βM̃ be the Stone-Čech compactification of M̃ . Since M ×M is

also a compactification of M̃ , there exists a continuous surjection π : βM̃ → M ×M such that

π|π−1(M̃) : π−1(M̃) → M̃ is a homeomorphism. Let

M̂ = π−1(∆M)

and the restriction of π to M̂ is also denoted by π : M̂ → ∆M ≈M . The Banach space C(M̂) of

all complex-valued continuous functions on M̂ with the sup norm admits a Banach LipM -bimodule

structure given by

(f · φ)(ω) = (φ · f)(ω) = f(π(ω))φ(ω),

f ∈ LipM,φ ∈ C(M̂), ω ∈ M̂,

which allows us to study the continuous Hochschild cohomology H∗(LipM,C(M̂)).

The space M̂ may be regarded as a non-metrizable analogue of the “space of directions”. For

f ∈ LipM , let Φf : M̃ → C be the map defined by

Φf (x, y) =
f(x) − f(y)

d(x, y)
, (x, y) ∈ M̃.

By the Lipschitz condition, Φf is a bounded continuous function on M̃ and hence admits the

unique extension, called the de Leeuw map ([1], [12],[13])

βΦf : βM̃ → C
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which restricts to the map to the space M̂ . Let D : LipM → C(M̂) be the map defined by

Df(ω) = βΦf (ω), f ∈ LipM.

Then D is a derivation, that is, D is a bounded linear operator which satisfies the Leibniz rule:

D(fg)(ω) = f(π(ω))Dg(ω) + g(π(ω))Df(ω), f, g,∈ LipM,ω ∈ M̂.

Thus for a point ω ∈ M̂ and a Lipschitz function f ∈ LipM , Df(ω) may be viewed as the

“directional derivative of f in the direction ω.”

A metric space (M,d) is said to satisfy the condition (G) if, there exists a δ > 0 such that,

for each pair of points x, y ∈ M with d(x, y) ≤ δ, there exists a unique isometric embedding of

the interval γ : [0, d(x, y)] → M such that γ(0) = x, γ(d(x, y)) = y. Riemannian manifolds and

CAT(κ) geodesic metric spaces are examples of spaces satisfying the condition (G).

Theorem 1 Let (M,d) be a compact metric space satisfying the condition (G) .

(1) For each n ≥ 1, the cohomology Hn(LipM,C(M̂)) has the infinite LipM-rank in the sense

that, for each K ≥ 1, there exist LipM-linearly independent K elements in Hn(LipM,C(M̂)).

(2) Let p ∈M and let C be the complex number field with the LipM-module structure defined by

f · z = f(p)z, f ∈ LipM, z ∈ C.

Then dimC Hn(LipM,C) = ∞.

In particular the global homological dimension (see [2]) of LipM is infinite, which corresponds to

an old result on Cr-function algebras (r ≥ 1) due to Pugach and Kleshchev [11], [8] and exhibits

a sharp contrast to the dimension theorem of Ogneva [9], [10] for the Fréchet algebra C∞(M).

The notion of alternating cocycles due to Johnson [4] plays the crucial role in the proof. Here we

should mention a long-standing open problem:

Open Problem. What is the global homological dimension of C([0, 1])?

A Banach algebra A is said to be amenable if every continuous derivation D : A → X∗ to the

dual X∗ of an arbitrary Banach A bimodule X with the A-module structure:

a · ξ(b) = ξ(ba), ξ · a(b) = ξ(ab), ξ ∈ A∗, a, b ∈ A

is inner, in other words, H1(A,X∗) = 0. This is known to be equivalent to the condition

Hn(A,X∗) = 0 for each n ≥ 1 and for each Banach A bimodule X. The fundamental theo-

rem of Johnson [3] states that a locally compact topological group is amenable, that is the space

L∞(G) admits a left-invariant mean, if and only if its measure algebra M(G) is amenable. The

above theorem indicates a strong non-amenability of Lipschitz algebras.

The space M̂ above, as the Stone-Cech remainder βM̃ \ M̃ , has complicated topology. For

example it contains no compact connected metrizable subsets which are not singletons ([7]). This
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implies that there is no continuous map σ : M → M̂ such that π◦σ = idM whenever M contains a

path, and the map π : M̂ →M is far from being a bundle projection. In view of this, the algebra

C(M) of the continuous functions on M would be more natural as a coefficient of the cohomology.

In this direction we have the following result.

Theorem 2 Let M be a compact Lipschitz manifold. Then we have

H1(LipM,C(M)) = 0.
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ON EXAMPLE 8 OF THE PAPER OF JAROSZ AND PATHAK

OSAMU HATORI

Abstract. The purpose of the paper is to confirm the situation of Example 8 of [5].

1. Introduction

Let K be a compact metric space and 0 < α ≤ 1. We denote the algebra of all complex-valued
continuous functions on K by C(K). Let 0 < α ≤ 1. For f ∈ C(K), put

Lα(f) = sup
x ̸=y

|f(x) − f(y)|
d(x, y)α

.

Then Lα is called an α-Lipschitz number of f , or just a Lipschitz number of f . When α = 1 we
omit the subscript α and write only L(f). The space of all f ∈ C(K) such that Lα(f) < ∞ is
denoted by Lipα(K). When α = 1 the subscript is omitted and it is written as Lip(K).

When 0 < α < 1 the closed subalgebra

lipα(K) = {f ∈ Lipα(K) : lim
x→x0

|f(x0) − f(x)|
d(x0, x)α

= 0 for every x0 ∈ K}

of Lipα(K) is called a little Lipschitz algebra. There are a variety of complete norms on Lipα(K)
and lipα(K). In this paper we mainly concern to the norm ∥ ·∥L of Lipα(K) (resp. lipα(K)) which
is defined by

∥f∥L = ∥f∥∞(K) + Lα(f), f ∈ Lipα(K) (resp. lipα(K)).

The norm ∥ · ∥M of Lipα(K) (resp. lipα(K)) is defined by

∥f∥M = max{∥f∥∞, Lα(f)}, f ∈ Lipα(K) (resp. lipα(K)).

Note that Lip(K) (resp. lipα(K)) is a Banach space with respect to ∥ · ∥L and ∥ · ∥M respectively.
The norm ∥ · ∥L is multiplicative. Hence Lip(K) (resp. lipα(K)) is a unital Banach algebra with
respect to the norm ∥ · ∥L. The norm ∥ · ∥M fails to be submultiplicative. Lipα((K, d), E) is
isometrically isomorphic to Lip((K, dα), E).

Jarosz and Pathak exhibited in [5, Example 8] that a surjective isometry on Lip(K) and lipα(K)
of a compact metric space K with respect to the norm ∥ · ∥∞ + Lα(·) is canonical in the sense
that it is a weighted composition operator. After the publication of [5] some authors expressed
their suspicion about the argument there and the validity of the statement there had not been
confirmed. The author of the present paper finds it difficult to follow the argument given in the
Example 8. There seem to be a confusion of the status of the result and it would be appropriate
to clarify the current situation. In fact we have exhibited the results which contains Example 8
(see [3, 1]). The purpose of this paper is to confirm Example 8 directly, where a proof is much
simpler than that in [3, 1]. One of the main tool is a theorem of Jarosz [4, Theorem] which is
revisited in the next section.

2010 Mathematics Subject Classification. 46B04,46J10 .
Key words and phrases. isometries, Lipschitz algebras .
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2. A theorem of Jarosz : isometries preserving 1

It is a classical problem to ask when is an isometry between function spaces with constants is
of the canonical form. The solution depends not only on the algebraic structures of these spaces,
but also on the norms in most cases. Jarosz [4] defined natural norms and provided a result that
isometries between a variety of spaces equipped with natural norms are of canonical forms.

Theorem 1 (Jarosz [4]). Let X and Y be compact Hausdorff spaces, let A and B be complex linear
subspaces of C(X) and C(Y ), respectively, and let p, q ∈ P. Assume A and B contain constant
functions, and let ∥·∥A, ∥·∥B be a p-norm and q-norm on A and B, respectively. Assume next that
there is a linear isometry T from (A, ∥·∥A) onto (B, ∥·∥B) with T1 = 1. Then if D(p) = D(q) = 0,
or if A and B are regular subspaces of C(X) and C(Y ), respectively, then T is an isometry from
(A, ∥ · ∥∞) onto (B, ∥ · ∥∞).

As is pointed out in [2, 1] the original proof of Theorem 1 needs a revision in some part. A
revised proof for algebra of Lipschitz functions is given in [2] and for a general case in [1]. By
Theorem 1 we have the following two corollaries.

Corollary 2. Let Kj be a compact metric space for j = 1, 2. Suppose that T : Lip(K1) → Lip(K2)
is a surjective complex-linear isometry with respect to the norm ∥ · ∥M . Assume T1 = 1. Then
there exists a surjective isometry φ : K2 → K1 such that

(2.1) Tf = f ◦ φ, f ∈ Lip(K1).

Conversely if T : Lip(K1) → Lip(K2) is of the form as (2.1), then T is a surjective isometry with
respect to both of ∥ · ∥M and ∥ · ∥L such that T1 = 1.

Without the assumption that T1 = 1 in Corollary 2, one may expect that T is a weighted
composition operator. But it is not the case. A simple counterexample is given by Weaver[6,
p.242] (see also [7]).

Corollary 3. Let Kj be a compact metric space for j = 1, 2. Suppose that T : Lip(K1) → Lip(K2)
is a surjective complex-linear isometry with respect to the norm ∥ · ∥L. Assume T1 = 1. Then
there exists a surjective isometry φ : K2 → K1 such that

(2.2) Tf(x) = f ◦ φ(x), f ∈ Lip(K1), x ∈ K2.

Conversely if T : Lip(K1) → Lip(K2) is of the form as (3.1), then T is a surjective isometry with
respect to both of ∥ · ∥M and ∥ · ∥L such that T1 = 1.

3. Surjective isometries on Lip(X) with ∥ · ∥L : Example 8 in [5].

Theorem 4. [5, Example 8] Suppose that Kj is a compact metric space for j = 1, 2. The map
U : Lip(K1) → Lip(K2) (resp. U : lipα(X1) → lipα(K2)) is a surjective isometry with respect
to the norm ∥ · ∥L if and only if there exists a complex number c with the unit modulus and a
surjective isometry φ : K2 → K1 such that

U(f)(x) = cf(φ(x)), x ∈ K2

for every f ∈ Lip(X1) (resp. f ∈ lipα(X1)).

The most difficult part of the proof is to prove that U(1) is a constant function with the unit
modulus.

Proposition 5. There exists a complex number c with |c| = 1 such that U(1) = c on K2.
2



Without loss of generality we may assume K2 is not a singleton. To prove Proposition 5 we apply
Lemma 7. To state Lemma 7 we first define an isometry from Lip(Kj) into a uniformly closed space
of complex-valued continuous functions. Let j = 1, 2. Let Mj be the Stone-Čech compactification
of {(x, x′) ∈ K2 : x ̸= x′}. For f ∈ Lip(Xj), let Dj(f) be the continuous extension to Mj of the
function (f(x) − f(x′))/dα(x, x′) on {(x, x′) ∈ K2 : x ̸= x′}. Then Dj : Lip(Xj) → C(Mj) is well
defined. We have ∥Dj(f)∥∞ = Lα(f) for every f ∈ Lip(Xj). Define a map

Ij : Lip(Xj) → C(Kj ×Mj × T)

by Ij(f)(x,m, γ) = f(x)+γDj(f)(m) for f ∈ Lip(Xj) and (x,m, γ) ∈ Kj×Mj×T. Note that T is
the unit circle in the complex plane. As Dj is a complex linear map, so is Ij. Let Sj = Kj×Mj×T.
For simplicity we just write I and D instead of Ij and Dj without causing any confusion. For
every f ∈ Lip(Xj) the supremum norm ∥I(f)∥∞ on Sj of I(F ) is written as

∥I(f)∥∞ = sup{|f(x) + γD(F )(m)| : (x,m, γ) ∈ Sj}
= sup{|f(x)| : x ∈ Kj}

+ sup{|D(F )(m)| : m ∈ Mj}
= ∥f∥∞(Kj) + ∥D(F )∥∞(Mj).

The second equality follows by an inspection that γ runs through the whole T. It follows that

∥I(f)∥∞ = ∥f∥∞ + ∥D(f)∥∞ = ∥f∥L

for every f ∈ Lip(Xj). We have D(1) = 0 and I(1) = 1. Hence I is a complex-linear isometry with
I(1) = 1. In particular, I(Lip(Xj)) is a complex-linear closed subspace of C(Sj) which contains
1. In general I(Lip(Xj)) needs not separate the points of Sj.

Lemma 6. Suppose that x0 ∈ K2 and U is an open neighborhood of x0. Then there exists functions
f0 ∈ Lip(X2) such that 0 ≤ f0 ≤ 1 = f0(x0) on K2 and f0 < 1/2 on K2 \ U. Furthermore there
exists a point (x0,m0, γ0) in the Choquet boundary for I2(Lip(X2)) such that γ0D(f0)(m0) =
∥D(f0)∥∞ ̸= 0.

Lemma 7. Suppose that x0 ∈ K2 and U is an open neighborhood of x0. Let f0 ∈ Lip(X2) be a
function such that 0 ≤ f0 ≤ 1 = f0(x0) on K2, and f0 < 1/2 on K2 \U. Let (x0,m0, γ0) be a point
in the Choquet boundary for I2(Lip(X2)) such that γ0D(f0)(m0) = ∥D(f0)∥∞ ̸= 0. (Such functions
and a point (x0,m0, γ0) exist by Lemma 6.) Then for any 0 < θ < π/2, cθ = (x0,m0, e

iθγ0) is also
in the Choquet boundary for I(Lip(X2)).

By Lemma 7 we can prove Proposition 5 in the same way as the proof of Proposition 9 in [3].

Proof of Theorem 4. By Proposition U(1) = c, |c| = 1. Put U0 = c̄U . Then U0 : Lip(X1) →
Lip(X2) is a surjective isometry with respect to the norm ∥ · ∥L such that U0(1) = 1. Then by
Corollary 3 there exists a surjective isometry φ : K2 → K1 such that

(3.1) U0(f)(x) = f ◦ φ(x), f ∈ Lip(K1), x ∈ K2.

Then we obtain that

U(f)(x) = cf ◦ φ(x), f ∈ Lip(K1), x ∈ K2.

�
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STRENGTH FUNCTIONS: A STRANGE FUNCTION SPACE
ASSOCIATED TO POSITIVE SEMIDEFINITE OPERATORS

LAJOS MOLNÁR

We begin with fixing the notation. In what follows

• H is a complex Hilbert space of dimension at least 2 and,
• B(H) is the algebra of all bounded linear operators on H equipped

with the operator norm ∥.∥,
• B(H)+ is the cone of all positive semidefinite elements of B(H),
• B(H)++ is the cone of all positive definite (i.e. invertible positive

semidefinite) elements of B(H),
• P1(H) is the collection of all rank-one orthogonal projections on

H .

For any A ∈ B(H)+, consider the function µ(A, .) on P1(H) defined by

µ(A,P ) = Tr AP, P ∈ P1(H)

(Tr is the usual trace functional). This way we clearly obtain a transfor-
mation

A 7−→µ(A, .)

from B(H)+ to a collection of functions over the metric space P1(H). In
fact, this transformation is an isometric affine order isomorphism from
the cone B(H)+ equipped with the operator norm and the usual oder
(coming from the notion of positive semidefinitness) into the cone of all
continuous nonnegative bounded real functions on P1(H) equipped with
the supremum norm and the pointwise order.

We have another representation of the elements of B(H)+ via so-called
strength functions which concept was introduced by Busch and Gudder
in [2] as follows: To any element A ∈ B(H)+ we associate the nonnegative
bounded real function λ(A, .) on P1(H) defined by

λ(A,P ) = sup{t ≥ 0 : tP ≤ A}, P ∈ P1(H).

The function λ(A, .) is called the strength function of A ∈ B(H)+.
The original motivation for Busch and Gudder to define and study this

notion came from the mathematical foundations of quantum mechanics.

The research was supported by the Hungarian Academy of Sciences and by the Na-
tional Research, Development and Innovation Office NKFIH, Grant No. K115383. The
author is very grateful to the organizers of the conference for their exceptionally kind
hospitality.
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Interestingly, that concept has later been employed in different areas and
applications of operator theory.

Here we report on some recent investigations relating strength func-
tions. In fact, in what follows we present a summary of the results pub-
lished in our recent paper [9].

Let us denote by S (H) the collection of all strength functions corre-
sponding to the operators in B(H)+. By Theorem 1 and Corollary 1 in [2],
the transformation

A 7−→λ(A, .)

is a one-to-one correspondence between the sets B(H)+ and S (H) which
preserves the order in both directions. Hence the operators in B(H)+ can
be faithfully represented by the elements of the class S (H) of nonneg-
ative bounded real valued functions. Since on spaces of bounded scalar
valued functions the most natural distance is the supremum distance,
this immediately offers us the possibility to define a corresponding new
metric on B(H)+. In what follows we study its properties.

We mention that, due to the one-to-one correspondence between
B(H)+ and S (H), the results we will present can be viewed both as re-
sults on the positive semidefinite cone of operators equipped with the
new metric and as results on the function space S (H) equipped with the
supremum distance. How one in fact views this depends on one’s taste or
preference.

Before formulating the results, we emphasize that in our investigations
and arguments a very useful formula concerning the explicit computa-
tion of the strength function of an operator A ∈ B(H)+ is an essential tool.
To present the formula, for any A ∈ B(H)+, we denote by RA the range of
A1/2. Theorem 4 in [2] tells us that for any A ∈ B(H)+ and unit vector
x ∈ H , the equality

λ(A,Px) =
{
∥A−1/2x∥−2 if x ∈ RA

0 otherwise

holds (Px denotes the projection onto the subspace generated by x). Here
A−1/2 means the inverse of the operator

A1/2
∣∣
(ker A1/2)⊥ = A1/2

∣∣
RA

from its range RA onto (ker A1/2)
⊥ = RA. In particular, we have λ(A,Px) >

0 if and only if x ∈ RA.
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1. ON THE ALGEBRAIC STRUCTURE OF THE SET OF ALL STRENGTH

FUNCTIONS

We begin with two results on the algebraic structure of S (H). They
show that S (H) is a rather strange collection of functions.

Proposition 1. The pointwise sum of two elements of S (H) belongs to
S (H) if and only if one of them is a scalar multiple of the other.

The above result shows that the set S (H) of all strength functions on
P1(H) is certainly not a cone under the usual operation of addition and
scalar multiplication.

By a famous result of Kadison on the characterization of the existence
of the supremum of two elelements in the partially ordered set of self-
adjoint operators [4], we have the following observation concerning the
pointwise order on S (H).

Proposition 2. For any A,B ∈ B(H)+ we have that the supremum of
{λ(A, .),λ(B , .)} exists in the partially ordered set S (H) if and only if they
are comparable, i.e., either λ(A, .) ≤λ(B , .) or λ(B , .) ≤λ(A, .).

After this we turn to the metric properties of the new metric on B(H)+
or, equivalently, to the properties of S (H) equipped with the supremum
distance.

2. TOPOLOGICAL PROPERTIES OF THE BUSCH-GUDDER METRIC

We define the so-called Busch-Gudder metric on B(H)+ as follows:

dBG (A,B) = sup{|λ(A,P )−λ(B ,P )| : P ∈ P1(H)}, A,B ∈ B(H)+.

Our first observation is the following.

Proposition 3. The topology of the metric dBG and that of the operator
norm ∥.∥ coincide on B(H)++.

Although the topologies of the Busch-Gudder metric and the opera-
tor norm coincide on B(H)++, they are still not equivalent meaning that
there are no positive real numbers c,C such that

c∥A−B∥ ≤ dBG (A,B) ≤C∥A−B∥, A,B ∈ B(H)++.

Indeed, we can give a very simple example already in the two-dimensional
case. Consider the sequence

An =
[

1 0
0 1/n2

]
, n ∈N.

This is clearly a Cauchy sequence in the operator norm. But it is not a
Cauchy sequence in dBG . The reason is that the corresponding strength
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functions λ(An , .) are all continuous while, as it can be computed explic-
itly, their pointwise limit is not so.

Moreover, we observe that in contrast to the coincidence of the topolo-
gies of the metric dBG and the operator norm on B(H)++, their behavior
is very much different on the singular part of B(H)+. In fact, for example,
on the set of projections in B(H)+, dBG is just the discrete metric provid-
ing the strongest possible topology while the operator norm topology on
that set is definitely weaker.

In the finite dimensional case we have the following comparison on
the whole set B(H)+.

Proposition 4. Let H be finite dimensional. If (An) is a sequence in B(H)+
which converges to A ∈ B(H)+ in the Busch-Gudder metric, then the con-
vergence holds also in the operator norm. Consequently, the operator
norm topology is weaker than the topology what dBG induces.

It follows immediately that, in the finite dimensional case, the operator
norm topology is strictly weaker than the one what dBG induces.

Next we consider such important properties as the connectedness and
the completeness of B(H)+ in the Busch-Gudder metric.

For any subspace M ⊂ H , let CM denote the set of all operators A ∈
B(H)+ for which RA = M . We need the following description of the clo-
sure of the operator set CM in the Busch-Gudder metric.

Proposition 5. First, B(H)++ is not dense in B(H)+ with respect to Busch-
Gudder metric although it is so with respect to the operator norm topology.
Second, for any subspace M ⊂ H with CM ̸= ;, the closure of CM in the
topology of dBG is CM ∪ {0}.

Now, concerning the connectedness of B(H)+ in the topology of dBG

we obtain the following statement.

Proposition 6. For any closed subspace M ⊂ H, we have that CM and
hence also its closure are connected in the topology of dBG . If H is finite di-
mensional, then B(H)+ is connected in the topology of the Busch-Gudder
metric.

We remark that for any (not necessarily closed) subspace M of H , the
sets CM and CM ∪ {0} are always convex. This follows from Douglas’ ma-
jorization theorem [3]. However, in the topology of the Busch-Gudder
metric convexity does not necessarily imply connectedness since, as one
can show, the addition is not continuous.

The last result in this section concerns completeness of B(H)+ in the
metric dBG .
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Proposition 7. Assume that M ⊂ H is a closed subspace. Then CM ∪ {0} is
complete in the Busch-Gudder metric. If H is finite dimensional, then the
whole space B(H)+ is complete in that metric.

3. ISOMETRY GROUPS

Above we have seen several differences between the topologies on
B(H)+ induced by the Busch-Gudder metric on the one hand and by the
distance coming from the operator norm on the other hand. However, in
what follows we see that the isometry groups corresponding to those two
distance measures are still the same.

The surjective isometries of B(H)+ with respect to the operator norm
can be described as follows: Any surjective operator norm isometry ϕ of
B(H)+ is of the form ϕ(A) =U AU∗, A ∈ B(H)+, where U is either a unitary
or an antiunitary operator on H . This fact can be proved by applying re-
sults of Mankiewicz [6] on the extension of surjective isometries between
convex sets of normed real-linear spaces with nonempty interiors, and of
Kadison [5] on the structure of linear surjective isometries between the
self-adjoint parts of C∗-algebras.

The next theorem shows that the structure of surjective isometries of
B(H)+ with respect to the Busch-Gudder metric is just the same.

Theorem 8. Let ϕ : B(H)+ → B(H)+ be a surjective map. It is an isometry
with respect to the Busch-Gudder metric, i.e., satisfies

dBG (ϕ(A),ϕ(B)) = dBG (A,B), A,B ∈ B(H)+.

if and only if there is a unitary or antiunitary operator U on H such that ϕ
is of the form

ϕ(A) =U AU∗, A ∈ B(H)+.

The necessity part of the statement is easy, one really needs to prove
only the sufficiency part. The main idea is the following. We show that
if ϕ is a surjective isometry, then it is an order automorphism. It means
that ϕ has the property that

A ≤ B ⇐⇒ϕ(A) ≤ϕ(B)

holds for any A,B ∈ B(H)+. The structure of all such maps was deter-
mined in our paper [7]. Theorem 1 there says that every order auto-
morphism of B(H)+ is a conjugation by an invertible bounded linear or
conjugate-linear operator T on H . The proof can easily be finished by
showing that in our case T is necessarily a unitary or an antiunitary op-
erator.

The proof of the fact that ϕ is order automorphism is performed in
three steps in which we give a sort of metric characterization of the order.
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In the first step we give a characterization of 0 in terms of the Busch-
Gudder metric.

Claim 1. For an operator A ∈ B(H)+ we have A ̸= 0 if and only if there is
r > 0 with the property that for every 0 < ϵ< (1/2)r there are T,S ∈ B(H)+
such that dBG (A,T ) ≤ r +ϵ, dBG (A,S) ≤ r +ϵ and dBG (T,S) ≥ 2r .

This implies that ϕ sends 0 to 0 and, in particular, we can deduce that
ϕ preserves the operator norm.

The next claim provides us with a metric characterization of the rank-
one elements of B(H)+.

Claim 2. For any given positive number r > 0, the operator A ∈ B(H)+
of norm r is of rank one if and only if there is exactly one element B ∈
B(H)+ of norm 2r for which dBG (A,B) ≤ r .

Finally, we complete the metric characterization of the order as fol-
lows.

Claim 3. For any A,B ∈ B(H)+ we have A ≤ B if and only if for ev-
ery rank-one element S ∈ B(H)+ with ∥S∥ = 2max{∥A∥,∥B∥} we have
dBG (A,S) ≥ dBG (B ,S).

After this, putting together all the information we have collected along
Claims 1-3, we obtain that ϕ is an order automorphism of B(H)+. By The-
orem 1 in [7] (or see Theorem 2.5.1 in [8]), we therefore obtain that there
is an invertible bounded linear or conjugate-linear operator T on H such
that ϕ(A) = T AT ∗ holds for all A ∈ B(H)+. Since ϕ preserves the opera-
tor norm, we can readily conclude that T is necessarily either unitary or
antiunitary. This finishes the proof.

We can translate the above theorem to the language of strengths func-
tions. First we recall that the surjective isometries of P1(H) with respect
to the distance of the operator norm are exactly the unitary-antiunitary
conjugations P 7→ U PU∗. In fact, this is essentially the content of
Wigner’s celebrated theorem on the structure of quantum mechanical
symmetry transformations, see e.g. Theorem 1.1 in [1]. Therefore, by the
theorem above we get the following corollary which is a sort of Banach-
Stone like theorem concerning the collection S (H) of real valued func-
tions.

Corollary 9. The surjective supremum distance isometries of the set of all
strength functions on H are exactly the composition operators of the col-
lection S (H) by surjective isometries of the domain P1(H).

To complement this corollary we present the final result which shows
that any permutation of P1(H) which induces a bijective composition
operator on the collection S (H) of functions is necessarily an isometry.
This again reflects a kind of strangeness of the set S (H) of functions. We
have the following proposition.
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Proposition 10. Let φ be a bijection of the set P1(H). Then the map s 7−→
s ◦φ is a bijection of the set S (H) of all strength functions if and only if φ
is of the form

φ(P ) =U PU∗, P ∈ P1(H)

with some unitary or antiunitary operator U on H.

The proofs of the above results with more material and further refer-
ences can be found in our paper [9].

4. OPEN PROBLEMS

Finally, we raise a few open problems that we find interesting with re-
gard to the results presented above.

1) Description of the surjective Busch-Gudder isometries of the posi-
tive definite cone B(H)++. In the proof of Theorem 8 we strongly used
the fact that B(H)+ contains all rank-one projections. We believe that to
solve this problem one needs to invent a quite different new approach.
(Observe that B(H)++ is not dense in B(H)+ in the metric dBG .)

2) Is B(H)++ with dBG a metric space of non-positively curvature? This
is an exciting problem raised at the meeting by Kazuhiro Kawamura.

3) Above we have obtained some finite dimensional results concerning
the space B(H)+ equipped with the Busch-Gudder metric. They tell that
in the finite dimensional case the operator norm topology is weaker than
the topology what dBG induces, B(H)+ is connected and complete with
respect to the Busch-Gudder metric. The natural question is that what
happens to these properties in the case where H is infinite dimensional.
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CYCLIC VECTORS IN FOCK-TYPE SPACES
IN MULTI-VARIABLE CASE

HANSONG HUANG KOU HEI IZUCHI

1. Introduction

Let Ω be a domain in Cd. We denote by Hol(Ω) the space of all
holomorphic functions on Ω. Let B be a Banach space in Hol(Ω).
Then a function f is said to be cyclic if fC ∩ B is dense in B. In
studying invariant subspaces for the multiplication operators by the
coordinate functions, it is important to know which function is a cyclic
vector.

1.1. Hardy space over D. In the groundbreaking work of studying
invariant subspaces in Banach spaces of holomorphic functions, Beurl-
ing characterized invariant subspaces and cyclic vectors in the Hardy
space H2(D) over the open unit disk D.

Theorem 1.1 (Beurling(1949)). (i) Let M be a closed subspace of
H2(D). Then M is an invariant subspace in H2(D) if and only
if M = φ ·H2(D) where φ is an inner function.

(ii) Let f ∈ H2(D). Then f is a cyclic vector in H2(D) if and only
if f is an outer function in H2(D).

1.2. Bergman space over D. Let L2
a(D) be the Bergman space over

D.

Definition 1.2. For f, g ∈ L2
a(D),

(i) we denote g ≺ f if ∥gq∥L2
a
≤ ∥fq∥L2

a
holds for all polynomials

q,
(ii) a function f ∈ L2

a(D) is said to be L2
a(D)-outer if |g(0)| ≤ |f(0)|

whenever g ≺ f .

In 1996, Aleman-Richter-Sundberg showed the following:

Theorem 1.3 (Aleman-Richter-Sundberg(1996)). Let f be a function
in L2

a(D). Then f is cyclic in L2
a(D) if and only if f is L2

a(D)-outer.

However, a function-theoretic characterization for a L2
a(D)-outer func-

tion is far beyond touch, though some special cases are treated. For a
singular inner function S(z), Shapiro and Roberts characterized which
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S(z) is cyclic. This shows that there are many singular inner functions
S(z) which are cyclic in L2

a(D). Also Borichev-Hedenmalm proved that
the invertibity in L2

a(D) does not imply the cyclicity in L2
a(D), though it

seems intuitively that the invertibity implies the cyclicity. From these
facts, we see that there is a big difference about cyclic vectors between
H2(D) and L2

a(D), see [Du, DS, Ga].
The results obtained by Beurling and Aleman-Richter-Sundberg were

extended to general Hp(D) and Lp
a(D) for p ≥ 1.

2. Fock space

Let s > 0 and α > 0. For a positive integer d, write

z = (z1, z2, · · · , zd) ∈ Cd,

and |z|2 = |z1|2 + |z2|2 + · · ·+ |zd|2. Let dV (z) be the Lebesgue measure
on Cd. For 1 ≤ p < ∞, let Lp

a(Cd, s, α) denote the space of all entire
functions f on Cd satisfying

∥f∥p
Lp
a(Cd,s,α)

=

∫
Cd

|f(z)|pe−α|z|s dV (z) <∞,

Then Lp
a(Cd, s, α) is a Banach space, called the Fock type space. When

p = 2 and s = 2, L2
a(Cd, 2, α) is the classical Fock space. In Lp

a(Cd, s, α),
by [GZ] it is known that every multiplication operator by a coordinate
function is unbounded, that is, for a function f ∈ Lp

a(Cd, s, α) fC is
not contained in Lp

a(Cd, s, α).

2.1. Fock spaces over C. In one-variable case, the second author has
characterized the cyclic vectors in the classical Fock space L2

a(C, 2, α).
In [Iz1], it is shown that every non-vanishing function is cyclic, and its
precise form is given. Also in [Iz2, HI], the authors have completely
characterized the cyclic vectors in Lp

a(C, s, α). From these results, we
see that in the case of Banach spaces of entire functions on C, the
situation is different from the case on D.

Theorem 2.1 ([Iz2]). Suppose p ≥ 1 and s is not an integer. Then
the following three conditions are equivalent:

(i) f is a cyclic vector in Lp
a(C, s, α),

(ii) f is non-vanishing function in Lp
a(C, s, α),

(iii) f = exp(h), where h is a polynomial satisfying deg(h) ≤ [s].

Theorem 2.2 ([HI]). Let s be a positive integer. Then the following
three conditions are equivalent:

(i) f is a cyclic vector in Lp
a(C, s, α),

(ii) f is non-vanishing and fC ⊆ Lp
a(Cd, s, α),



46 HANSONG HUANG KOU HEI IZUCHI

(iii) f = exp(h), where h(z) =
∑s

n=0 cnz
n, with cn ∈ C and |cs| < α

p
.

2.2. Fock spaces over Cd. How about several variables cases? We
get the complete characterization for cyclic vectors in Lp

a(Cd, s, α).
For s /∈ N, we have the following.

Theorem 2.3. Suppose p ≥ 1 and s > 0 is not an integer. Then the
following conditions are equivalent:

(i) f is a cyclic vector in Lp
a(Cd, s, α),

(ii) f is non-vanishing function in Lp
a(Cd, s, α),

(iii) f = exp(h), where h is a polynomial satisfying deg(h) ≤ [s].

In the case of s ∈ N, for a polynomial h(z) =
s∑

n=0

∑
|β|=n

cβz
β, we define

∆h = max
|z|=1

∣∣∣∣∣∣
∑
|β|=s

cβz
β

∣∣∣∣∣∣ .
Then we have the following theorem.

Theorem 2.4. Suppose p ≥ 1 and s is a positive integer. Then the
following conditions are equivalent:

(i) f is a cyclic vector in Lp
a(Cd, s, α),

(ii) f = exp(h), where

h(z) =
s∑

n=0

∑
|β|=n

cβz
β,

with cβ ∈ C and ∆h <
α
p
,

(iii) f is non-vanishing and fC ⊆ Lp
a(Cd, s, α).
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Weighted composition operators and n-tuple
multiplicativity

NIT, Nagaoka College Rumi Shindo Togashi

This paper includes the joint work with Takeshi Miura from Niigata University.

1 Definitions and Notations

Let X and Y be locally compact Hausdorff spaces. Let C0(X) be the Banach algebra of complex-

valued continuous functions on X such that

∀ε > 0, ∃K ⊂ X: compact such that |f(x)| < ε (∀x ∈ X \K),

with the supremum norm ∥f∥ = supx∈X |f(x)|.
The subset A ⊂ C0(X) is called a function algebra on X if A satisfies the followings:

(1) A is an algebra of C0(X) and closed under the norm ∥f∥

(2) A separates strongly the points of X

def⇐⇒ (i)∀x ∈ X,∃ f ∈ A with f(x) ̸= 0 and

(ii)∀x, y ∈ X with x ̸= y, ∃f ∈ A with f(x) ̸= f(y).

Let σπ(f) = {f(x) : x ∈ X, |f(x)| = ∥f∥}. The set σπ(f) is called the peripheral spectrum of f .

If σπ(f) = {1}, then the function f is called a peak function.

Let P (x) = {u ∈ C0(X) : σπ(u) = {1} = {u(x)}} and PA(x) = P (x) ∩ A. For a point x ∈ X,

x is a peak point of A
def⇐⇒ ∃u ∈ PA(x) such that |u(ξ)| < 1 (∀ξ ̸= x), and

x is a weak peak point of A
def⇐⇒ ∃{uα} ⊂ PA(x) such that {x} = ∩u∈{uα}u

−1({1}).

If X is first countable, then all x ∈ X are peak points of C0(X).

In this paper, A and B are function algebras on X and Y , respectively. Let X and Y equal to

the sets of all weak peak points of A and B, respectively. Let T be a surjection from A onto B.
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2 Molnár-type theorem

2001年，Molnárの結果により，以下が示された．

Theorem (Molnár, 2001 [5]). Let X be a first countable compact Hausdorff space

and C(X ) be the Banach algebra of complex-valued continuous functions on X . If a

surjection S : C(X ) → C(X ) satisfies σ(S(f)S(g)) = σ(fg) (∀f, g ∈ C(X )), where

σ(·) is the spectrum, then there exist a homeomorphism ϕ : X → X and a continuous

function ω : X → {1,−1} such that S(f) = ω · (f ◦ ϕ) (∀f ∈ C(X )).

この結果は一般化され，更に多くの対象に関する研究が行われている．特に, function algebraに
関するいくつかの結果を，前節で仮定した条件の場合に限定して紹介する．（実際の論文のほとん
どではここで示すものより一般的な結果が発表されている．）

Theorem (Hatori-Miura-Oka-Takagi, 2009 [1]). If σπ(T (f)T (g)) = σπ(fg) (∀f, g ∈
A), then there exist a homeomorphism ϕ : Y → X and a continuous function ω : Y →
{1,−1} such that T (f) = ω · (f ◦ ϕ) (∀f ∈ A).

Theorem (Tonev, 2010 [7]). If σπ(T (f)T (g)) ∩ σπ(fg) ̸= ∅ and σπ(T (f)) =

σπ(f) (∀f, g ∈ A), then there exist a homeomorphism ϕ : Y → X and a continu-

ous function ω : Y → {1,−1} such that T (f) = ω · (f ◦ ϕ) (∀f ∈ A).

Theorem (cf. [3, 7]). If ∥T (f)T (g)∥ = ∥fg∥ (∀f, g ∈ A), then there exist a homeo-

morphism ϕ : Y → X such that |T (f)| = |f ◦ ϕ| (∀f ∈ A).

上記の流れは，Molnárによる荷重合成作用素の特徴づけに用いた情報を精査し，必要な情報だけ
を抽出していると言える．ここで，この荷重合成作用素を特徴付ける集合（情報量）はどこまで
小さくできるのか？という自然な問題が浮かぶ．2010年のTonevの結果を見ると, かなり一般的
な条件にまで達していると思われる．しかし，付加条件がない場合はどのようになっているのか？
に関しては，反例も発表されておらず，完全な解答は得られていない．しかし，別の付加条件を
与えることで一つの条件式のみから同様な結果が得られ，2016年の関数環研究集会で下記を報告
した．（単位元を持つ uniform algebraに関する同様な結果は [2]で示されている．）

Theorem (T., 2016 [6]). If σπ(T (f)T (g)) ∩ σπ(fg) ̸= ∅ (∀f, g ∈ A) and X is first

countable, then there exist a homeomorphism ϕ : Y → X and a continuous function

ω : Y → {1,−1} such that T (f) = ω · (f ◦ ϕ) (∀f ∈ A).

これらの結果の証明には, peak functionに関する性質を活用している．今回は特に下記を用いる．

Strong Bishop’s lemma (peak points). Let f ∈ A. If x ∈ X is a peak point of A and

f(x) ̸= 0, then there exists a peak function u ∈ PA(x) such that σπ(fu) = {f(x)} and |fu(ξ)| <
|f(x)| on X \ {x}.

その後，この結果を更に一般化させ，n個の積に関する条件を持つ写像の構造について，結果
が得られた．本稿ではその得られた結果と証明の概略を紹介する．
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3 Main theorem and outline of the proof

Theorem 1 (T.). If n ≥ 2 is a fixed natural number, X is first countable, and

σπ

(
n∏

k=1

T (fk)

)
∩ σπ

(
n∏

k=1

fk

)
̸= ∅ (∀fk ∈ A),

then there exist a homeomorphism ϕ : Y → X and a continuous function ω : Y → {e 2
n
πi, · · · , e

2(n−1)
n

πi, 1}
such that T (f) = ω · (f ◦ ϕ) (∀f ∈ A).

(Outline of the proof) If σπ (
∏n

k=1 T (fk)) ∩ σπ (
∏n

k=1 fk) ̸= ∅, then ∥
∏n

k=1 T (fk)∥ =

∥
∏n

k=1 fk∥ and ∥T (f)∥ = ∥f∥. For every f, g ∈ A, there exist peak functions u ∈ PA(y) and

U ∈ PB(y) such that ∥fg∥ = ∥fgun−2∥ ≤ ∥T (f)T (g)∥∥T (u)∥n−2 = ∥T (f)T (g)∥ and, similarly,

∥T (f)T (g)∥ = ∥T (f)T (g)Un−2∥ ≤ ∥fg∥. Therefore ∥TfTg∥ = ∥fg∥. By Theorem (cf. [3, 7])

in Section 2, there exists a homeomorphism ϕ : Y → X such that |T (f)| = |f ◦ϕ| (∀f ∈ A).

Fix y ∈ Y and f ∈ A with f(ϕ(y)) ̸= 0. Then there exists a peak function u ∈ PA(ϕ(y))

such that σπ(fun−1) = {f(ϕ(y))} and |fun−1(x)| < |f(ϕ(y))| on X \ {ϕ(y)}. Because

σπ (T (f)T (u)n−1)∩σπ(fun−1) ̸= ∅, there exists a point η ∈ Y such that T (f)(η)T (u)(η)n−1 =

f(ϕ(y)). Since |f(ϕ(y))| = |T (f)(η)T (u)(η)n−1| = |f(ϕ(η))u(ϕ(η))n−1| and |fun−1(x)| < |f(ϕ(y))|
on X \ {ϕ(y)}, we can see that ϕ(η) = ϕ(y), that is η = y and T (f)(y)T (u)(y)n−1 = f(ϕ(y)).

Fix u1 ∈ PA(ϕ(y)) with |u1(x)| < 1 on X \ {ϕ(y)}. Then T (u1)(y)n = u1(ϕ(y)) = 1. For

any u2 ∈ PA(ϕ(y)), T (u2)(y)T (u1)(y)n−1 = u2(ϕ(y)) = 1. That is T (u2)(y) = T (u1)(y) for all

u2 ∈ PA(ϕ(y)). Therefore T (u)(y) is unique and T (u)n = 1. Define ω(y) = T (u)(y). Then

ω is continuous and T (f) = ω · (f ◦ ϕ) (∀f ∈ A). �

Theorem 2 (Jointwork with Takeshi Miura from Niigata University). Let A = C0(X)

and B = C0(Y ). If n ≥ 3 is a fixed natural number, X is first countable, and

sup
y∈Y

∣∣∣∣∣
(

n∏
k=1

T (fk)

)
(y) + 1

∣∣∣∣∣ = sup
x∈X

∣∣∣∣∣
(

n∏
k=1

fk

)
(x) + 1

∣∣∣∣∣ (∀fk ∈ C0(X)),

then there exist a homeomorphism ϕ : Y → X, a continuous function ω : Y →
{e 2

n
πi, · · · , e

2(n−1)
n

πi, 1}, and a clopen subset K ⊂ Y such that

T (f)(y) = ω(y) ×

{
f(ϕ(y)) y ∈ K

f(ϕ(y)) y ∈ Y \K
(∀f ∈ C0(X)).

Theorem 2については，単位元を持つ uniform algebraに関して，n = 2の結果が [4]などで
既に知られている．しかし function algebraに関して n = 2の場合は未解決である．

(Outline of the proof) If supy∈Y |(
∏n

k=1 T (fk)) (y) + 1| = supx∈X |(
∏n

k=1 fk) (x) + 1|, then

supx∈X

∣∣∣∣(fn∏n−1
k=1 fk

)
(x) +

1

m

∣∣∣∣ 5 n

√
∥fn∥n +

2

mn

∥∥∏n−1
k=1 T (fk)

∥∥ +
1

m
. Letting m → ∞, we can
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see that
∥∥fn∏n−1

k=1 fk
∥∥ 5 ∥fn∥

∥∥∏n−1
k=1 T (fk)

∥∥. There exists a peak function u ∈ P (y)

such that ∥u
∏n−1

k=1 fk∥∞ =
∥∥∏n−1

k=1 fk
∥∥ . Therefore

∥∥∏n−1
k=1 fk

∥∥ 5
∥∥∏n−1

k=1 T (fk)
∥∥ . Similarly,

we can see that
∥∥∏n−1

k=1 T (fk)
∥∥ 5

∥∥∏n−1
k=1 fk

∥∥ , that is
∥∥∏n−1

k=1 fk
∥∥ =

∥∥∏n−1
k=1 T (fk)

∥∥ . Moreover,

∥TfTg∥∞ = ∥fg∥∞ and there exists a homeomorphism ϕ : Y → X with |T (f)| = |f ◦ ϕ|.
Fix y ∈ Y and f ∈ C0(X) with f(ϕ(y)) ̸= 0. There exists a peak function u ∈

P (ϕ(y)) such that σπ(fun−1) = {f(ϕ(y))} and |fun−1(x)| < |f(ϕ(y))| on X \ {ϕ(y)}. Let β =

f(ϕ(y))/|T (f)(y)|. Then |β| = 1 and supy∈Y |T (f)(η)T (βu)(η)T (u)(η)n−2(y) + 1| = |f(ϕ(y))| +

1. There exists a point η ∈ Y such that T (f)(η)T (βu)(η)T (u)(η)n−2 = |f(ϕ(y))|. Since
|f(ϕ(y))| = |T (f)(η)T (βu)(η)T (u)(η)n−2| = |f(ϕ(η))u(ϕ(η))n−1|, we can see that η = y, that

is T (f)(y)T (βu)(y)T (u)(y)n−2 = |f(ϕ(y))|.
Fix u1 ∈ P (ϕ(y)) with |u1(x)| < 1 on X\{ϕ(y)}. Then T (u1)(y)n = T (u2)(y)T (u1)(y)n−1 = 1

for any u2 ∈ P (ϕ(y)). Therefore T (u)(y) is unique and T (u)n = 1. Define ω(y) = T (u)(y).

Moreover, for every β ∈ C with |β| = 1, T (βu)(y) is unique. Since there exixts a

peak function h ∈ P (ϕ(y)) such that supx∈X |βh(x)n + γ| ≤ max{|β + γ|, 1}(γ = ±1,±i),
T (βu)(y) = βT (u)(y) or βT (u)(y). Define K = ∩f∈C0(X){y ∈ Y : T (if)(y) = iT (f)(y)}. Then

K is clopen. �
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Operator theoretic differences between weighted
Bergman and Dirichlet spaces

Nippon Institute of Technology Shûichi Ohno 1

1 Introduction

Throughout this article let D be the open unit disk in the complex plane and H(D) the space

of all analytic functions on D. For 0 < p < ∞ and −1 < α < ∞, let Ap
α denote the weighted

Bergman space of all functions f ∈ H(D) for which

∥f∥p
Ap

α
= (1 + α)

∫
D
|f(z)|p(1 − |z|2)α dA(z) <∞,

where dA(z) = dxdy/π denotes the Lebesgue area measure on D. Then the functions

Kλ(z) =
1

(1 − λ̄z)2+α

reproduce the point-evaluations for λ ∈ D. For 1 < p < ∞, ⟨·, ·⟩ stands for the pairing in the

duality (Ap
α)∗ = Aq

α, where q = p/(p− 1). Then

∥Kλ∥pAp
α

= (1 + α)

∫
D

(1 − |z|2)α

|1 − λ̄z|(2+α)p
dA(z) ≈ 1

(1 − |λ|2)(2+α)(p−1)
,

so that

∥Kλ∥Ap
α
≈ 1

(1 − |λ|2)(2+α)/q
.

For p = 1,

∥Kλ∥A1
α
≈ log

1

1 − |λ|2
.

For 1 ≤ p <∞, using Hölder’s inequality, we have

|f(z)| ≤ C∥f∥Ap
α

1

(1 − |z|2)
2+α
p

(1.1)

and

|f ′(z)| ≤ C∥f∥Ap
α

1

(1 − |z|2)1+
2+α
p

(1.2)

1The author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of
Science (No.15K04905).
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for f ∈ Ap
α and z ∈ D.

The Hardy spaces Hp can be viewed as limiting spaces of weighted Bergman spaces Ap
α as α

decreases to −1.

Similarly, for 0 < p < ∞ and −1 < α < ∞, let Dp
α denote the weighted Dirichlet space of all

functions f ∈ H(D) for which

∥f∥pDp
α

= |f(0)|p + (1 + α)

∫
D
|f ′(z)|p(1 − |z|2)α dA(z) <∞.

The space D2
0 is the classical Dirichlet space and D2

1 = H2. If p < α + 1, then it is easy to see

that Dp
α = Ap

α−p. Indeed, this follows from the well known estimate∫
D
|f(z)|p(1 − |z|2)α dA(z) ≈

∫
D
|f ′(z)|p(1 − |z|2)p+α dA(z).

(See [10, Theorem 6].) On the other hand, if p = 2 + α, then Dp
p−2 is the analytic Besov space.

We here summarize the growth condition of functions in the weighted Dirichlet space Dp
α. For

p > 1, using [16, Lemma 4.26, Proposition 4.27], we obtain that for a function f ∈ Dp
α,

|f(z) − f(0)| =

∣∣∣∣ 1

1 + α

∫
D

f ′(w)(1 − |w|2)
w(1 − zw)2+α

(1 − |w|2)α dA(w)

∣∣∣∣
≤ C

∫
D

∣∣∣∣f ′(w)(1 − |w|2)
(1 − zw)2+α

∣∣∣∣ (1 − |w|2)α dA(w)

≤ C∥f∥Dp
α

(∫
D

(1 − |w|2)q

|1 − zw|(2+α)q
(1 − |w|2)α dA(w)

)1/q

,

where q = p/(p− 1).

So by [16, Lemma 3.10], we have

(1) If 1 < p < 2 + α, then

|f(z) − f(0)| ≤
C∥f∥Dp

α

(1 − |z|2)
2+α−p

p

. (1.3)

(2) If p = 2 + α, then

|f(z) − f(0)| ≤ C∥f∥Dp
α

(
log

1

1 − |z|2

)1/q

. (1.4)

(3) If 2 + α < p,

|f(z) − f(0)| ≤ C∥f∥Dp
α
. (1.5)

So, if 2 + α < p, then Dp
α ⊂ H∞.

We heere study operator theoretic differences between weighted Bergman spaces and weighted

Dirichlet spaces by considering the integral operator.

For a fixed function φ ∈ H(D), we define two types of integral operators on H(D) :

Sφf(z) =

∫ z

0

φ(ζ)f ′(ζ) dζ
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and

Tφf(z) =

∫ z

0

φ′(ζ)f(ζ) dζ.

The bilinear operator (f, g) →
∫
f g′ was introduced by Calderón in harmonic analysis in the 60’s

[6]. After his research on commutators of singular integral operators, Pommerenke was probably

the first author to consider the boundedness of the operator Tφ on the Hardy space in late 70’s.

A systematic study of Tφ in late 90’s was initiated by Aleman and Siskakis. See surveys [1, 14]

for more background and results on Tφ.

We consider the Bloch space as a range space of integral operators. Recall that the Bloch space

B consists of all analytic functions f on D satisfying

sup
z∈D

(1 − |z|2)|f ′(z)| <∞.

Endowed with the norm

∥f∥Bβ
= |f(0)| + sup

z∈D
(1 − |z|2)|f ′(z)|,

the Bloch space B becomes a Banach space. Let Bo be the little Bloch space consisting of all

f ∈ B such that

lim
|z|→1

(1 − |z|2)|f ′(z)| = 0.

In the sequel we will characterize boundedness and compactness of integral operators mapping

weighted Bergman and Dirichlet spaces to the Bloch space.

To characterize the compactness, we need the following “weak convergence theorem”, which is

easily proved by the normal family argument.

Proposition 1.1 Let X = Ap
α, H

∞ and Dp
α for 1 ≤ p < ∞ and α > −1. Suppose that

Sφ (Tφ, resp.) : X → B is bounded. Then Sφ (Tφ, resp.) : X → B is compact if and only if

for any bounded sequence {fn} in X that converges to 0 uniformly on every compact subset of D,
∥Sφfn∥B (∥Tφfn∥B, resp.) converges to 0.

2 Ap
α → B

Theorem 2.1 For 1 ≤ p < ∞ and α > −1, Sφ : Ap
α → B is bounded if and only if φ ≡ 0.

Moreover this equivalence also holds for any Hardy space Hp with 1 ≤ p <∞.

Theorem 2.2 For 1 ≤ p <∞ and α > −1, Tφ : Ap
α → B is bounded if and only if

(i) If p < 2 + α, then φ ≡ constant.

(ii) If p ≥ 2 + α, then sup
z∈D

(1 − |z|2)1−(2+α)/p|φ′(z)| <∞.
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Theorem 2.3 For 1 ≤ p <∞, Tφ : Hp → B is bounded if and only if

(i) If p = 1, then φ′ ∈ H∞.

(ii) If 1 < p <∞, then sup
z∈D

(1 − |z|2)1−1/p|φ′(z)| <∞.

Next we consider the compactness of Tφ.

Theorem 2.4 Suppose that Tφ : Ap
α → B is bounded for p ≥ 2+α. Then Tφ : Ap

α → B is compact

if and only if

lim
|z|→1

(1 − |z|2)1−(2+α)/p|φ′(z)| = 0.

Theorem 2.5 For 1 ≤ p < ∞, suppose that Tφ : Hp → B is bounded. Then Tφ : Hp → B is

compact if and only if

(i) If p = 1, then φ ≡ constant.

(ii) If 1 < p <∞, then lim
|z|→1

(1 − |z|2)1−1/p|φ′(z)| = 0.

3 H∞ → B
The opertaor Sφ was not considered in [7].

Theorem 3.1 Sφ : H∞ → B is bounded if and only if φ ∈ H∞.

Theorem 3.2 Suppose Sφ : H∞ → B is bounded. Then Sφ : H∞ → B is compact if and only if

φ ≡ 0.

Theorem 3.3 Tφ : H∞ → B is bounded if and only if φ ∈ B.

More we can prove the following by the same as in the proof of Theorem 3.2.

Theorem 3.4 Suppose that Tφ : H∞ → B is bounded. Then Tφ : H∞ → B is compact if and only

if φ ∈ Bo.

Remark. Take φ(z) = log
1

1 − z
. Then φ ∈ B and Tφ is a Cesàro operator. By Theorem 3.3,

Tφ : H∞ → B is bounded. In [8], it is shown that the Cesàro operator is bounded from H∞ to

BMOA.
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4 Dp
α → B

Theorem 4.1 For 1 ≤ p < 2 + α and α > −1, Sφ : Dp
α → B is bounded if and only if φ ≡ 0.

Theorem 4.2 For 2 + α < p and α > −1, Sφ : Dp
α → B is bounded if and only if

sup
z∈D

(1 − |z|2)1−
2+α
p |φ(z)| <∞.

Next we consider the case of Tφ.

When p < 1 + α, the following yields from that Dp
α = Ap

α−p.

Theorem 4.3 For 1 < p < 1 + α, Tφ : Dp
α → B is bounded if and only if

(i) if p <
2 + α

2
,then φ ≡ constant.

(ii) if
2 + α

2
≤ p < 1 + α,then sup

z∈D
(1 − |z|2)2−(2+α)/p|φ′(z)| <∞.

Theorem 4.4 For 1 + α ≤ p < 2 + α, Tφ : Dp
α → B is bounded if and only if

sup
z∈D

(1 − |z|2)2−(2+α)/p|φ′(z)| <∞.

Theorem 4.5 For p = 2 + α, Tφ : Dp
α → B is bounded if and only if

sup
z∈D

(1 − |z|2)
(

log
1

1 − |z|2

)1/q

|φ′(z)| <∞,

where q = p/(p− 1).

If 2 + α < p and α > −1, the following holds from the fact that Dp
α ⊂ H∞.

Theorem 4.6 For 2 + α < p and α > −1, Tφ : Dp
α → B is bounded if and only if φ ∈ B, that is,

sup
z∈D

(1 − |z|2)|φ′(z)| <∞

Next we consider the compactness of Sφ and Tφ and would obtain the “little-oh” condition in

the sequel.

For the operator Sφ, it is sufficient to consider the cases p = 2 + α and 2 + α < p.

Theorem 4.7 For p = 2+α and α > −1, supose that Sφ : Dp
α → B is bounded. Then Sφ : Dp

α → B
is compact if and only if φ ≡ 0.

Theorem 4.8 For 2 + α < p and α > −1, suppose that Sφ : Dp
α → B is bounded. Then

Sφ : Dp
α → B is compact if and only if

lim
|z|→1

(1 − |z|2)1−
2+α
p |φ′(z)| = 0.
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Next we consider the case of Tφ.

When p < 1 + α, the following yields from that Dp
α = Ap

α−p.

Theorem 4.9 For p < 1 + α and α > −1, suppose that Tφ : Dp
α → B is bounded. Then the

following hold.

(i) If p <
2 + α

2
, then Tφ is always compact.

(ii) If
2 + α

2
≤ p < 1 + α, then Tφ : Dp

α → B is compact if and only if

lim
|z|→1

(1 − |z|2)2−(2+α)/p|φ′(z)| = 0.

.

Theorem 4.10 For 1 + α ≤ p < 2 + α and α > −1, suppose that Tφ : Dp
α → B is bounded. Then

Tφ : Dp
α → B is compact if and only if

lim
|z|→1

(1 − |z|2)2−(2+α)/p|φ′(z)| = 0.

Theorem 4.11 For p = 2 + α, suppose that Tφ : Dp
α → B is bounded. Then Tφ : Dp

α → B is

compact if and only if

lim
|z|→1

(1 − |z|2)
(

log
1

1 − |z|2

)1/q

|φ′(z)| = 0,

where q = p/(p− 1).

The case that 2 + α < p and α > −1 remains.

Problem. For 2 +α < p and α > −1, suppsoe that Tφ : Dp
α → B is bounded. Then Tφ : Dp

α → B
is compact if and only if φ ∈ Bo, that is, lim

|z|→1
(1 − |z|2)|φ′(z)| = 0.

The author would like to thank Dr. Atte Reijonen for pointing out a paper [12] in the conference

and so has known that only inner functions in Dp
p−2 are finite Blaschke products. For 2 + α < p

and α > −1, then Dp
α ⊂ Dp

p−2.

Also, the author thanks Professor Takuya Hosokawa for introducing a paper [15] after the

conference.
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Finite Rudin type invariant subspaces

Department of Mathematics, Niigata University Keiji Izuchi

Let H be a separable Hilbert space and T be a bounded linear operator on H. Let M be a

closed subspace of H. M is called an invariant subspace for T if TM ⊂M . For a subset X of H,

we denote by [X]T the smallest invariant subspace of H containing X for T . A subset X of M is

said to be a generating set of M for T if [X]T = M . Note that there are many generating sets for

an invariant subspace M . The minimum number of elements in the generating sets of M is called

the rank of M for T , and we denote it by rankTM .

Let H2 = H2(D2) be the Hardy space over the bidisk D2 with variables z, w. We denote by

H2(z), H2(w) the z, w variable Hardy spaces on D, respectively. Then H2 coincides with the

Hilbert space tensor product H2(z)⊗H2(w). We denote by Tz, Tw the multiplication operators on

H2 multiplying z, w, respectively. A closed subspace M of H2 is said to be invariant if TzM ⊂M

and TwM ⊂M . The structure of invariant subspaces of H2 is fairly complicated, and there are a

lot of studies on them (see [1, 2, 7, 10, 11]). We denote by T the unit circle. Let L2 = L2(T2) be

the space of square integrable functions on T2 with respect to the normalized Lebesgue measure.

Identifying f ∈ H2 with its boundary function f ∗ on T2, we may think of H2 as a closed subspace

of L2. For a closed subspace E of H2, we denote by PE the orthogonal projection from L2 onto

E.

A function f(z) ∈ H2(z) is called outer if [f(z)]Tz = H2(z). Also f(z) is called inner if |f ∗| = 1

a.e. on T. We denote by I the set of non-constant inner functions. For θ1(z), θ2(z) ∈ I, we write

θ1(z) ≺ θ2(z) if θ2(z)/θ1(z) ∈ H2(z). We denote by H∞(z) the set of bounded analytic functions

on D. For η ∈ H∞(z), we define the Toeplitz operator Tη on H2(z) by Tηf = ηf for f ∈ H2(z).

For θ(z) ∈ I, write

Kθ(z) = H2(z) ⊖ θ(z)H2(z),

and we denote by Sη,θ the compression operator of Tη on Kθ(z) defined by Sη,θf = PKθ(z)ηf for

f ∈ Kθ(z).

Let {φn(z)}n≥1 be a sequence in I satisfying that φn+1(z) ≺ φn(z) for every n ≥ 1. Let

M1 =
∞∨
n=1

φn(z)wn−1H2

be the closed linear span of φn(z)wn−1H2, n ≥ 1. Then M1 becomes an invariant subspace of H2.

In [7, p. 72], Rudin showed the existence of {φn(z)}n≥1 satisfying that rank{Tz ,Tw}M1 = ∞, so M1

is called a Rudin type invariant subspace. See [3, 4, 5, 6, 8, 9] for the studies of related subjects.
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Associated with an invariant subspace M of H2, Yang [10, 11] introduced the fringe operator

Fz,M on M ⊖ wM defined by

Fz,M = PM⊖wMTz|M⊖wM .

Since

M =
∞⊕
n=0

wn(M ⊖ wM),

a lot of information of M are encoded in the properties of the fringe operator. If E is a generating

set of M as an invariant subspace, then PM⊖wME is a generating set of M ⊖wM for Fz,M . So we

have

rankFz,M
(M ⊖ wM) ≤ rank{Tz ,Tw}M.

Hence to study rank{Tz ,Tw}M , first we need to study rankFz,M
(M ⊖wM), for, the space M ⊖wM

is much smaller than M .

We have

M1 ⊖ wM1 = φ1(z)H2(z) ⊕
∞⊕
n=2

φn(z)wn−1Kφn−1/φn(z).

In [4] (see also [5]), rankFz,M1
(M1 ⊖ wM1) was determined. When φ1(z) is a Blaschke product,

moreover it is proved that

rank{Tz ,Tw}M1 = rankFz,M1
(M1 ⊖ wM1).

Let k be a (fixed) positive integer. Let φ1(z), φ2(z), · · · , φk(z) and ψ1(w), ψ2(w), · · · , ψk(w) be

non-constant one variable inner functions satisfying that

(#1) φk(z) ≺ φk−1(z) ≺ · · · ≺ φ1(z)

and

(#2) ψ1(w) ≺ ψ2(w) ≺ · · · ≺ ψkw).

We put φk+1(z) = ψ0(w) = 1. Let

M =
k∨

n=0

φn+1(z1)ψn(z2)H
2.

By conditions (#1) and (#2), M is an invariant subspace of H2 and M ̸= H2. The space M is

called a finite Rudin type invariant subspace and studied in [6]. For 1 ≤ n ≤ k, let

ζn(z) =
φn(z)

φn+1(z)
and ξn(w) =

ψn(w)

ψn−1(w)
.

By condition (#1) and (#2), ζn(z) and ξn(w) are inner functions. Note that ζk(z) = φk(z),

ξ1(w) = ψ1(w), and

φℓ(z) =
k∏

n=ℓ

ζn(z) and ψℓ(w) =
ℓ∏

n=1

ξn(w)
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for every 1 ≤ ℓ ≤ k. Moreover, we assume that

(#3) ζ1(z), · · · , ζk(z), ξ1(w), · · · , ξk(w) are non-constant.

Note that

M = φ1(z)H2(z) ⊕
k+1⊕
n=2

φn(z)ψn−1(w)Kζn−1(z) ⊗H2(w).

We have

M⊖ wM = φ1(z)H2(z) ⊕
k+1⊕
n=2

φn(z)ψn−1(w)Kζn−1(z).

The purpose of this talk is to determine

rankFz,M(M⊖ wM) and rankF∗
z,M

(M⊖ wM).

For a closed subspace E of M⊖ wM, we denote by Fz,E the compression operator of Fz,M on

E defined by Fz,Ef = PEFz,Mf for f ∈ E. Let φ0(z) be another non-constant inner function

satisfying that φ1(z) ≺ φ0(z). Put ζ0(z) = φ0(z)/φ1(z). Set

Γ =
k+1⊕
n=1

φn(z)ψn−1(w)Kζn−1(z).

Then

M⊖ wM = Γ ⊕ φ0(z)H2(z) and rankFz,Γ
Γ ≤ rankFz,M(M⊖ wM).

We shall determine rankFz,Γ
Γ, rankF∗

z,Γ
Γ,

rankFz,M(M⊖ wM) and rankF∗
z,M

(M⊖ wM),

and prove that

rankFλ,Γ
Γ ≤ rankFλ,M(M⊖ bλ2(z2)M) ≤ rankFλ,Γ

Γ + 1.

We may study

rankFz,M1
(M1 ⊖ wM1) and rankF∗

z,M1
(M1 ⊖ wM1),

for an infinite Rudin type invariant subspace M1 under some additional condition.

For

G = φ1(z)h1(z) ⊕
k+1⊕
n=2

φn(z)ψn−1(w)hn−1(z)

∈ φ1(z)H2(z) ⊕
k+1⊕
n=2

φn(z)ψn−1(w)Kζn−1(z) = M⊖ wM,

we define

ΦG = φ1(z)h1(z) ⊕
k+1⊕
n=2

ψn−1(0)φn(z)hn−1(z)

∈ φ1(z)H2(z) ⊕
k+1⊕
n=2

φn(z)Kζn−1(z) = H2(z).
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Then if ψk(0) ̸= 0, then Φ : M⊖ wM → H2(z) is a one-to-one and onto operator. The following

is a key theorem.

Theorem 1 If ψk(0) ̸= 0, then ΦFz,M = TzΦ on M⊖ wM and rankFz,M(M⊖ wM) = 1.

Applying Theorem, when ψk(0) = 0 we may determine rankFz,M(M⊖ wM). For sequence of

inner functions satisfying the similar conditions as (#1), (#2) and (#3), we may generalize our

results.
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