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de Leeuw-Rudin’s condition and products of
analytic self-maps of the unit disk

KK T80 M 24 (Takuya Hosokawa)

Let H(D) be the space of all analytic functions on the open unit disk D and S(D) be the set of
all analytic self-maps of D. Let H*> be the set of all bounded analytic functions on D and Upge
be the closed unit ball of H*. de Leeuw and Rudin proved that an analytic self-map ¢ of D is an
extreme point of Uy~ if and only if

2 1
loc——df = . 1
/0 B T (e = M)

We will consider the following:

Question 1 For which pair of two analytic self-maps ¢, does the product ¢ -1 hold de Leeuw
and Rudin’s condition (1)?

To do this, we prepare some notations.
Definition 2 (i) Denote by Ext Uy the set of all extreme points of Up.
(ii) For ¢ € S(D), define that E, = {¢ € S(D) : ¢ - ¢ € Ext Uy }.
We can prove the followings immediately.
Proposition 3 Let ¢ be an analytic self-map of D.
(1) For any ¢ € S(D), E, C Ext Ugeo.
(ii) If ¢ & Ext Uge, then E, = 0.
(iii) Let o = I - F be the inner-outer decomposition of p. Then E, = Ep.
(w) If ¢ is an inner function, then E, = Ext Upgeo.

Here we remark that (i) and (ii) follows from the fact that ¢ -1 is not extreme if either ¢ or 1) is
not extreme, and this fact holds more general settings.

Letting ¢ = ¢, we consider the relation between the extremeness of ¢ and the extremeness of
©?, and more general power ¢". From the direct calculation, we get the following.



Proposition 4 Let ¢ be an analytic self-map on D. Then the following conditions are equivalent:
(i) p € Ext Upyes.
(11) ™ € Ext Uy for some positive integer n.

(111) ™ € Ext Uy for any positive integer n.

The proposition above gives us an idea to determine the extremeness of ¢ - 1, that is, if ¢ is
enough similar to ¢, then the product ¢ -1 would be similar to ¢2. Hence the extremeness of ¢ -1
would be distinguished. Here we use the pseudo-hyperbolic distance p(a,b) between a and b in D
defined by
a—>b
1—ab|

pla,b) =

Then we have the following theorem.
Theorem 5 Let ¢ and ¢ be in Ext Uge with ||¢ - ]|eo = 1. If

lim sup p(p(zn), ¥(2,)) < 1

n—oo

for any sequence {z,} C D such that |p(z,) - ¥(z,)| — 1, then ¢ - ¢ € Ext Uge.

The converse of the theorem above is not true. We give an example.

Example 6 Let ¢ be an extreme point of Uge and put ¢¥(z) = —¢(z). Then

limsup p(p(2,), ¥(2n)) =1

n—oo

for any sequence {z,} C D such that |¢o(2,) - ¥(2,)| = 1. But ¢ -1 = —¢?* is an extreme point of
Ups.

S 3k

[1] K. deLeeuw and W. Rudin, Extreme points and extreme problems in H', Pacific J. Math. 8
(1958), 467-485.



Surjective isometries on C'([0,1]) with respect
to norms derived from plane figures

University of Tsukuba, Kazuhiro Kawamura
National Institute of Technology, Yonago College,
Hironao Koshimizu

Niigata University, Takeshi Miura

Let M and N be normed linear spaces with norms || - ||a; and || - ||, respectively. A mapping
S: M — N is an isometry, if and only if ||S(f) — S(9)llv = ||f — gllar for all f,g € M. We do
not assume that isometries are linear; If S is a linear map, then S is an isometry if and only if it
preserves the norm in the sense that ||S(f)||n = || f||a for all f € M.

The research of isometries dates back to 1932. Let Cr(K') be the Banach space of all real valued
continuous functions on a compact Hausdorff space K with respect to point wise operations and
the supremum norm || f||oc = maxgeg | f(k)| for f € Cr(K).

Theorem 1 (Banach [1, Theorem 3 in Chapter XI]). Let X and Y be compact metric spaces. If
S is a surjective isometry, then there ezist a continuous function u: Y — {£1} and a homeomor-
phism ¢: Y — X such that

S(y) = S0)(y) +uly)f(oly)  (Vf € Cr(Y)).

The above statement is what Banach actually proved, and it is different from [1, Theorem 3 in
Chapter XI]. It is easy to see that the opposite implication of Theorem 1 is valid.
Stone [7] obtained the same result without assuming metrizability of compact spaces.

Theorem 2 (Stone [7, Theorem 83]). Let X and Y be compact Hausdorff spaces. If S is a
surjective isometry, then there exist a continuous function u:Y — {£1} and a homeomorphism
¢:Y — X such that

S(y) =S0)(y) +uly)f(oly)  (Vf € Cr(Y)).

The research of isometries has been extended in various directions. We will focus on C*([0, 1]),
the complex linear space of all continuously differentiable functions on the closed unit interval
[0,1]. There are several norms that make C*(]0, 1]) Banach spaces. For example, the following
three are typical norms on C([0,1]):

!Ifl!cztzl[épl}(\f(t)l+|f’(t)\)7 1 lle = 1 lloe + 1 Moos Ay = £ O]+ [ llocs



for f € C'([0,1]). Here, || - [ denotes the supremum norm on [0,1], i.e. [|gllec = sup,c(o 1 l9(t)]
for continuous function g on [0, 1]. Isometries on C'([0, 1]) are characterized with respect to those
three norms:

Theorem 3 (Cambern [2]). Let S be a surjective, complex linear isometry on C*([0,1]) with
respect to ||-||. There ezists a constant ¢ € T ={z € C: |z| = 1} such that

S(H)=cf(t)  (VfeC(0,1]), Vt€[0,1)),

or

S(HE)=cfl—t)  (Vf e (0,1]), vt €0,1)).

Theorem 4 (Rao and Roy [6]). Let S be a surjective, complex linear isometry on C*([0,1]) with

respect to ||||s. There exists a constant ¢ € T such that

S(H)=cf(t)  (Vf e (0,1]), V€ [0,1)),

or

S(HE)=cfl=t)  (VfeC(0,1]), vt €[0,1)).

Theorem 5 (Koshimizu [4]). Let S be a surjective, complex linear isometry on C([0,1]) with
respect to ||-||,. There exist a constant ¢ € T, a continuous function u: [0,1] — T and a homeo-
morphism ¢: [0,1] — [0, 1] such that

S(H(t) = cf(0) +/0 u(s)f'(¢(s))ds — (Vf € C*([0,1]), Vt € [0,1]).

We now recall that the Theorems 1 and 2 characterize surjective isometries without assuming
their linearity. It is a natural question whether or not similar results to Theorems 3, 4 and 5 are
valid for surjective, not necessarily linear, isometries. To answer this question, the Mazur-Ulam
theorem plays a crucial role:

Theorem 6 (Mazur and Ulam [5]). Let M and N be normed linear spaces. If S: M — N is a
surjective isometry, then S — S(0) is real linear.

If S: M — N is a surjective isometry, then so is the linear map S — S(0).
In Theorems 3, 4, 5, the authors characterize surjective complex linear isometries with respect
to different norms. To unify these results, we introduce a norm on C*(]0, 1]).

Definition . Let D be a compact connected subset of [0, 1] x [0, 1]. We define

1y = sup (LF()[+ 1S (E)])

(s,t)eD
for each f € C'(]0,1]).

Remark . It is easy to see that ||-[|,,, is a norm on C*([0,1]) if and only if p; (D) Upy(D) = [0, 1],
where p; denotes the projection from D to the j-th coordinate in [0, 1].

4



Example . (1) If Dy = {(s,t) € [0,1] x[0,1] : s = t}, then || f|| ) = [l f[| for all f € C*([0,1]).
(2) If Dy = [0,1] x [0, 1], then [|f[|,p,, = [Ifll for all f € C([0,1]).

(3) 1f Dy = {(s,1) € [0,1] x [0,1] : s = 0}, then [|f] ,, = [IfI], for all £ € C*([0, 1))

(4) If Dy ={(s,t) €[0,1] x [0,1] : 0 < s <1, L <t <1}, then || - [|(p,) is a norm on C*([0, 1]).

We give the characterization of surjective isometries, which need not be linear, on C*([0,1])
with respect to [|-|| . This generalizes and unifies Theorems 3, 4 and 5.

Theorem 7 ([3]). Let D be a compact connected subset of [0, 1] x [0, 1] such that p;(D)Upy(D) =
[0,1]. Let py(D) = [a,b] and pa(D) = [c,d] witha < b and ¢ < d. If S: C'([0,1]) — C*([0,1]) is a
surjective isometry, then there exist continuous functions k, B: [0,1] — C, constants g9,e1 € {£1},
a C'-diffeomorphism ¢: [a,b] — [a,b] and a homeomorphism v: [c,d] — [c,d] such that || = 1
on la,bl], k is constant on [c,d], || =1 on [c,d] and

S(N(E) = S0)(t) + sB)f (@) (Vf € CH([0,1]),Vt € [a,b]),
(S((E) = (SO (1) + SO (v € ([0, 1]), ¥t € [e,d]).
Here, we define [f(s)]* by
fls) ife=1,
fls) ife=—1
for s €[0,1] and ¢ € {£1}.

If, in addition, a < b, then e = 1 and ¢ = ¥ on [a,b] N [¢,d], and there exists a constant
v € {£1} such that

/

o' =7, Pf=ry on [abN]ed.
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Weak multiplicative conditions for weighted
composition operators between function algebras

R THESEHEMAE FE CBEé) B3 (Rumi Shindo Togashi)

1 *fm
AT XY ZRFTa v 87 b 2RV 7250, Co(X) %2 X Lo EE GRS T
YVe> 0, ’KCcX: av7 b st |f(z) <eze X\ K

ZHLETODREET S, JIVLEZ ||flloo = sup,ex |f(x)| TEET 5.
WG AC Co(X) BT OFEMEZ AT L E, A%z X LD function algebra & FES.

(1) Ais an algebra of Cy(X) and closed under the norm || f||

(2) A separates strongly the points of X

PN (i)’z € X3 f e Awith f(z) 0 and

(ii)"z,y € X with = £y, 3f € A with f(z) # f(y).

F7z, f € Co(X) DD ES 0. (f) = {f(2) : 2 € X, |f(2)| = || flloo} & f DREARZ B L
(peripheral spectrum) &9 . KW ART FLH31 7217 TH B B% % peak function &M, 2 T
I NifonHiE 2 B % peak function ZEDEG % P(x) = {u € Co(X) : oq(u) = {1} = {u(x)}} &%
T EILT 5. HIZ, oA AILET % peak function DEA P(x) N A 1F Py(x) TERT. 7,
€ XIWZOWT|u(€)| <1("¢€#x) & D X I ue Py(x) WHIET 5 & &, 2 1d A D peak point
EW, % Py(x) DBIEIR {ua} T {2} = Nueuayu™ '({1}) EERE 2 L &, 213 A D weak peak
point & PSS,

DT, A, B % X,Y _E® function algebra T X & A ® weak peak point ZRDES, YV I B D
weak peak point EEDELGE—HTHI L LTS, /T2 AP BNOEFLETS.

2 BOARYT NIZREFET DEREZD—HKL

2001 412 Molnar 1ZBL P DfEHRZ R L 7-.



Theorem (Molnar, 2001 [6]). X 23 —HEAMEALLEICaY 7 b Ed5. X
L OERBAEER B D & 70 2 3 F v NBRZ O(X), 0(-) Z AT PV ET 5. C(X)
o ZNHENDES S 0(S(f)S(9) =o(fg) ("f,9g € C(X)) AT L E, FMHE
o X - X EHEGREE o X - {1, -1} BELTS(f) =a-(foo)("f € C(X))
ERED. DFD SEMESBRMEMNETDH 5.

Z OFERTIE, TIEEPEIEEZKE L Tk, BOEENED 5% \0», LR IHIREDAD S
ZDE{ROMEEZ TERIRELTE Y, —ODOMBEGHEIFHAZEDREOT 252 T0EEHF2 5.
CHUIREBIRENL D TH D, % OEEEE I X > THE ZMETHON TV, KT, function
algebra IZB T 2R Z T ICW L ODBNT 5. 28, EEOWMLDIZEAETIZI ZTHNT
55D KD BB RIRINT VS, Lo LSHENRRICRE L 20 D5 ICIRE L 7653
ELTHNATZZEET B,

Theorem (Rao-Roy, 2005 [7]). A = B, o(T(f)T(9)) = o(fg) ("f,g € A) & &
L& AMHER ¢ : X —» X EHFREE o X - {1, -1} PHFELTT(f) =
a-(fod)('f € A) LEES.

Theorem (Honma, 2006 [3]). A= Cy(X),B=Cy(Y),a(T(f)T(g9)) =0c(fg) ("f,g €
A) AT EE FAHEER ¢ 1 YV — X EHEHEEE o 1 Y — {1, -1} BFEEL T
T(f) =a-(fod)('f € A) LF¥Z.

Theorem (Hatori-Miura-Oka-Takagi, 2009 [2]). o.(T(f)T(g9)) = o.(fg) ("f,g €
A) ZARLETLEE AMHEGER .Y — X EdlFHEEE T o Y — {1, -1} BEELT
T(f)=a-(fod)('f€A) £FES.

Theorem (Tonev, 2010 [8]). o, (T(f)) = ox(f), o (T(f)T(9))No=(fg) # 0 ("f, g €
A) AT EE FAHEER ¢ . Y — X EdlfHEET o Y — {1, -1} BFEELT
T()=a-(fod)('f € A) LRED.

ERETTHEA L 265 HE, Molnar 12 X 25 TH O N TL A EBOES % L D /NS WD HEE
ICHIPR L 72 BT EZARETREINE 2 2R LTV, ZOMNERZIT T, MEAKRIEHER
KA T 2EEIIEZFTHILLTELDD? £ W) FEIDNFED . 2010 £ED Tonev DifEH % H,
58, %0 MBINEFMHFICETEL TS EBbNDED, ZNTHMELE2H D, FX7HET
LRI DA EEZ NS, TORICOVTRERBEZBEE IR/ TRV, L L, Joff
Mtz 5252 £ T—2DFMNRDAD S FMERERZE S 2 LUK, ARTIEZOES
N7 AR 2z G O & H b TN T 5.

3 EHER EFEADHEIR
S 5 AR T T5 5.



Theorem 1 (T.). T Z o (T(f)T(9)) Nor(fg) #0 ("f,g € A) ZHTHDETEH. X B
B—AENBEHCTEE FAHGER G Y - X E#B o 1 Y — {1, -1} BEFEEL T
T(f) = - (fod)('f € 4) &#E 5.

%%, MA7on2 £ uniform algebra (2B 9 2 Rk K RIE [4] THHRINTW 5.
FREROFEHIZIE, 2 D72 TREFTICTEH S 415 peak function DHEEIZBI T 2 F5H LD
IV RIET B EBRICEHT R E2 v 5.

Lemma 2. z € X, f € AICNLT f(z) #0 £ T 5. z DIEEDER U, 12D\ T
ox(fu) ={f(x)}, [fu(€)] <|f(x)] on X\ U,
& 7% % X 9 7% peak function u € P(z) DSFET 5.

Fric, BUT 23D 320,

Lemma 3. 7 € X, f € AICK LT fla) A0 & T 5. X DE-AHRNBEZ AT L&,

ox(fu) ={f(@)}, [fu(€)] <[f(x)] on X\ {z}

& 7% % X 9 7% peak function u € P(z) DSFET 5.

Theorem 4 [1, 5, 8]. [|T(f)T(9)|lw = [|f9llc "f,g€ A) ZHTT L E MG ¢: Y — X B3
FELT|T(f) =|foo|("fe A £FEE3.

(FHEE® ¢ DHER) "y e Y 2FET 2. Yu e T (Py(y)) I8 LT |u| (1) € ul(ox () £F
B, 2O u| " (1) DICEEBS Nuer—1 oy ul " (1) 12 1D HRD S 2586 {2} TH . ¢(y) < z,
LERTS. 5L, 2DoIFY 20 X ~NORMHEERT |T(f) =|fod|("f € A) ZHIT.

(Theorem 1 DFERA) 55ff: & Theorem 4 X W FMHER ¢ : Y — X BHELEL T

TN W) = 1f (DI f € ATy €Y)

AT, LedioT
T(f)y) =0« fl(y) =0
TH5.
AR, T(f)(y) f(o(y) #0 EARET 5. X 1355 AIHA%E R T2 5, Lemma 3 £ D

or(fu) ={f(oW)}, |fu(@)] <[f(e(y))| on X \{o(y)}
L% u € Palo(y)) DIFEET 5.

ox(T(f)T () Nox(fu) = ox(T(F)T(w) N {f(e(y))} # 0

9



TH 2D, T(HW)TW) () = f(6ly) £%%y €Y BEET .

[F ()] = [T ()W) = @y )uld@))] = [(fu)(6y))]

$0y =y THRIET(HW)T(W)(y) = fo(y) % 5. v € Pa(dly)) KPPV T f=v,u T
%L

)
(

ThHs0r5

ED Tw)(y) 13&y ICBALT—RICEE 5.
oly) = T(v)(y)
LEET2Ealy)?=1THs. MLk,
T(f)(y) =T(f)y)T(u)(y)?® =TW)(y)f(¢W) = aly) f(oW)(fe ATy eY)

Wbh 2. T(f), fo Rtk b o 12HHETH 2.

230
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Research on Fejér-Riesz type inequalities
for Bergman spaces

School of Pharmacy, Nihon University — Norio NIWA (F+3] BiLEH)

First, we set several notations.
D:={z€C: |z| <1}
0D :={z€C: |z| =1}
H(D) :={f : f is analytic in D}.

Let 0 < p < o0.

2w ] [ %
HP = {f € H(D) + |Ifln» := sup (/O \f(rew)!p;l—ﬂ) < OO}-

If p = o0,
H> = {f € HD) : [|flla~ := sup £ (2)] < OO}-
z|<1
H? are called Hardy spaces. If 0 < p < 1, then H? is a complete metric space under the metric
d(f, g) == IIf — gll%». I 1 < p < oo, then H? is a Banach space under the norm || f||g». Here, we

would like to introduce original Fejer-Riesz inequality for the Hardy spaces H?.

Theorem 1 (Fejér-Riesz inequality for H?, [2]) Let 0 <p < oo. If f € HP, then

1 2m ) 2w ) de
[ @rds < [Tisenpa (=5 [Cirer s =)

The constant % 15 best possible.

Let 0<p<ooand —1 < a < .
Ap = {f € H(D) : ||fllaz == (/D [f(2)P(L+ o) (1 — IZIQ)QdA(Z))p < OO}-

1 1 A
where dA(z) = —dady = —rdrdf (z = x + iy = re'?).
s s

AP are called weighted Bergman spaces. If 0 < p < 1, then A? is a complete metric space under
the metric d(f, g) := ||f —gll». If 1 < p < oo, then A? is a Banach space under the norm || f|| 4z

In 2012, Andreev proved that the Fejér-Riesz type inequalities hold for the weighted Bergman
spaces AZ.

11



Theorem 2 (Fejér-Riesz type inequality for A2, [1]) Let —1 < a < co. If f € A2, then for
any ¢ € 0D,

/0 G =) e < ha [ PP +a)(1 = PAG) (= AlfIEs)-
1

Here)\ag—a(if—1<0z<0),)\a§ (if 0 < «).
T

1+«

Yonezawa Mathematics Seminar in 2014, Kazuhiro Kasuga gave a lecture about Andreev’s
results above, and he conjectured that Fejer-Riesz type inequalities for the weighted Bergman
spaces AP (0 < p < oo) would hold:

Conjecture Let 0 < p <ooand —1 < a <oo. If f € A2, then for any ¢ € D, does

| icora = rede <, [ H@PA+ ) = AR (= Ml
hold?

We can get a trivial partial ansewer. Let 0 < p < oo. Suppose that f € AP has no zeros in D.
Then we can define {f(2)}2, and {f(2)}% € A2. Applying Andreev’s result to {f(2)}2, we have

/0 [f(Ca)P(1 —2)"*da < Aa /D [F()P(1+a)(1 = [2[*)"dA(2). (1)

If f € AP has zeros in D, I do not know whether inequalities (1) hold.

S S HR

[1] V. V. Andreev, Fejér-Riesz type inequalities for Bergman spaces, Rend. Circ. Mat. Palermo,
61 (2012), no.3, 385-392.

[2] P. Duren, Theory of H? spaces, Academic Press, 1970.

[3] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces, Springer, 2000.
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Another approach to a self-adjointness of
operators with a Kato-Rellich potential

IR R T2 E il (Go Hirasawa)

1 Introduction

We have been studied (unbounded and linear) semiclosed operators in a Hilbert space H. Mo-
tivations for studying such operators are the following.

- The set S(H) of semiclosed operators in H is well behavior class in a sense. That is, S(H) is
closed under sums, products, (weak) adjoints and closures if they exist.

- The set S(H) contains the set B(H) of bounded operators and the set C(H) of closed operators.
Hence, s+t € S(H) if s,t € C(H).

- A semiclosed operator is equivalent to a quotient of bounded operators. Hence, we can use some
technique of bounded operators.

- The set S(H) is metrizable.

It is known that the set S(H) is metrizable by the g-metric which is introduced in [1]. Let
Ssym(H) and Sy, (H) be the set of semiclosed symmetric operators and selfadjoint operators, re-
spectively. Then we have a result ([2]) that Sy, (H) is relatively open in Sy, (H):

(S(H),q) D Ssym(H) D Ssu(H)
lativel p
relatively open

Using the above result, we deduce a self-adjointness of Schrodinger operators with a Kato-Rellich
potential, which is well known as Kato’s Theorem. To give another proof for such the theorem is
main purpose in this note. These are also stated in [2].

[1] Go Hirasawa, A metric for unbounded linear operators in a Hilbert space, Integ. Equ.Oper.Theory
70 (2011), no.3, 363-378.

2] , Selfadjoint operators and symmetric operators, Acta Sci. Math. (Szeged) 82 (2016),
529-543.
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2 Kato’s Theorem

A real valued function V(z) on RY is said to be a Kato-Rellich potential if it is decomposed by
V =V, +Vp € LP(RY) 4 L>=(RM).

Here, p =2 if N =1,2,3 and some p (> §) if N > 4.

The following function is an example of Kato-Rellich potentials. V(x) = Tl (x € RY), where
cisaconstant,0<k:<%ifN:1,2,3and0<k<2ifN24.

The following is Kato’s theorem.

Theorem 2.1 Let V be a Kato-Rellich potential on RN (N > 1). Then, —A+V is a self-adjoint
operator with a maximal domain dom(—A) in L*(RY).

3 Preliminaries

Let (H,(, )) be an infinite dimensional complex Hilbert space. A subspace M in H is said
to be semiclosed if there exists an inner product (-, )y on M such that (M, || - ||a) is a Hilbert
space and the inclusion mapping (M, || - ||as) < H is continuous. Clearly, a closed subspace is
a semiclosed subspace. As another typical example, Sobolev spaces in L*(RY) are semiclosed
subspaces in L2(RY). A subspace M in H is semiclosed if and only if M is a bounded operator
range in H, that is, M = X H for some X € B(H). An operator s : dom(s) — H is said to be
semiclosed (resp. closed), if the graph {(u,su) € H x H : u € dom(s)} of s is semiclosed (resp.
closed) in the product Hilbert space H x H. Clearly, a closed operator is a semiclosed operator.
A semiclosed operator is equivalent to a quotient of bounded operators. That is, an operator s
belongs to S(H) if and only if

s=Y/X: Xu—Yu, (ue H) for some X,Y € B(H)

with ker X C kerY. A densely defined operator s : dom(s) — H is said to be symmetric, if
(su,v) = (u, sv) u,v € dom(s). Namely,

su = s'u, wu € dom(s) C dom(s").

Simply, symmetric operator s is denoted by s C s*. When the equation s = s* holds, s is said to
be selfadjoint.

4 A choice function o and the ¢g-metric for S(H)

We choose a Hilbert norm || - ||y from each semiclosed subspace M. Denote such a choice
function by a.

Now, let a be a choice function as above. For a given semiclosed subspace M, there exists a
Hilbert norm || - || by « such that (M, || - ||as) < H. It is known that a Hilbert space (M, || - ||ar)
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is isometrical isomorphic to de Branges space M(A) for some A > 0in B(H). To choose a Hilbert
norm is equivalent to choose a positive operator A > 0 satisfying M = AH and || - || = || - || a-
Here de Branges norm || - || 4 is defined by (Az, Ay)4 := (Px, Py), (x,y € H), P is the orthogonal

projection onto (ker A)*. Therefore the notation o has two meanings such as

- a choice of Hilbert norms
- a choice of positive operators.

We introduce a metric in the set S(H) of semiclosed operators. For semiclosed operators s,t €
S(H), since domains dom(s) and dom(t) are semiclosed, there exist positive bounded operators
A and C such that dom(s) = AH and dom(t) = CH. Hence they are uniquely represented by
quotients of bounded operators :

s=B/A, t=D/C,

where A,C € BT (H), B,D € B(H) with ker A C ker B and ker C' C ker D. Then we define the

metric between s and t by

Definition 4.1  ¢(s,t)(= qa(s,t)) == max{||A - C|, ||B — D||}.

5 A radius of Laplacian kA

Let Sgym(H) be the set of (densely defined) semiclosed symmetric operators, and let Sy, (H) be
the set of selfadjoint operators.

(S(H),q) > Ssym(H) D S (H).

Theorem 5.1 ([2]) The set Seu(H) is relatively open in Ssym(H). That is, Vs € Sso(H), 30 > 0
such that
q(s,t) <6 and t € Sy (H) imply t € S5o(H).

We do not give a proof of Theorem 5.1 here. But we clarify a radius ¢ (we call § in Theorem 5.1

a radius of s) as the following. Let s € S,o(H), s < B/A and R := (A2 + B*B)z. Then, a radius
of s is given by

1 1

§=—||RY " ==~(R 1

IR = AR, (1)

where v(R) = inf{||Rf| : f € (ker R)*, | f|]| = 1}. Then we have a question.
What is a radius ¢ of Laplacian kA in L2 (RY)? (k€ R\ {0})

Now, we will reply this question. Let kA = kB/A be a quotient. The domain of kA is the
Sobolev space H?(RY) with the order 2 which is isometrical isomorphic to de Branges space

M(A), (A= (I —A)") (cf. [1]). Hence we see that
R = (A + (kB)*(kB))? = (A® + k*B*B)z.
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AR = int RSP = inf (42 + KB B)LFIE = inf {IASI? +RBI?)
=0 0 = A+ KA = 2)7

= Hlﬂlf{\l(HI&!) FIP + [1RIEP (L + €)A1Y

(L+ k2[g[)2 e o
1A= 1” 1+ [¢]? ]?H _||1T|l— IMF?=~(M)?,  ((ker M)+ = LE(RY)),

(L+ K€1)

where M = is the multiplication operator in LZ(RY). Hence

1+ [¢?
1 1 1, i, 1 1+ )2 -1
(5:_32_1\4:_1\411:_“—1
() = 00 =51 =5 (| gl
- (IS L) " =)
B 1+ k2|¢]4 2\ k2 ‘
Proposition 5.2 A radius 6 of kA is § = ¢ In paticular, a radius of —A is Q
2v1 + k2 4

Remark 5.1 From a view point of quantum mechanics, Shrodinger operator is given by a form

of —%A + V,ﬂwhere m is mass of a particle and h is h/2m for the planck constant h. This is a

case of k = —5— in a radius formula, so that § of —%A 18

L h?
CoV1+EZ 2VAm2 + RE

A wvalue of this expression seems to be dependent on the choice of physical units. If so, it is slightly

mysterious.

6 Another approach to a self-adjointness of operators with
a Kato-Rellich potential

Based on Theorem 5.1 and Proposition 5.2 , we will show a self-adjointness of the Schrédinger
operator —A +V with a Kato-Rellich potential V, V = V| + V5 € LP(RY) + L>°(RY). Here, p = 2
if N =1,2,3 and some p > & if N > 4. Clearly dom(V) = dom(V;) := {f € L*(RY) : Vi f €
L*(RM)}. By Sobolev embedding theorem as below, we see that dom(—A) C dom(V}) :

Vif € L*RY) if Vfe H*RY).
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Theorem 6.1 (Sobolev embedding theorem) The following assertions hold.
(i) H*(RY) — L>®(RY) if N =1,2,3.

(i) H*(RYN) = LYRY) 0<Vg< (3 —2)'if N >4

Hence we have
dom(—A+ V) =dom(—A + V; + V;) = dom(—A + V) = dom(—A).

First, we explain an outline of approach for selfadjointness. For V = Vi +V, € LP(RY) + L>*(RY),

we can find sequences

{Vin}ee, for i = 1,2 such that V =V, + V,,, € LP(RY) 4+ L=(RY)
with [|[Vi,]r — 0 as n — oo.

Then,

- We easily see —A+V € Sy, (H).

- We see that —A + V4, is selfadjoint on dom(—A).

- We see that, by lemma 6.3, a radius of —A + V4, is taken as the same of a radius of —A.
cq(=A+V,—A+V5,) = 0asn— 0.

Hence, by Theorem 5.1, we conclude that —A 4 V' is selfadjoint with dom(—A).

Lemma 6.2 For s,t € S(H) with dom(s) = dom(t), let s = B/A and t = D/A. Then,
q(s,t) =q(s + X, t+ X),

for any X € B(H).

Proof.

g(s+ X,t + X) =q<B/A+X/I, D/A+X/I) q(B/AJrXA/A, D/A+XA/A>
—g((B+XA)/A, (D+XA)/A) = |[(B+XA) - (D+ XA)|
= [|1B =Dl =q(s,1). O

Lemma 6.3 Let s € Sso(H) and S € Bso(H). For a radius § of s, 0 is also a radius of selfadjoint
operator s +S. That is, g(s + S,t) <0 and t € Ssym(H) imply t € Sso(H).

Proof. Suppose that ¢(s + S,t) < J. By Lemma 6.2, we see that

q(s+ S,t) = q<s + S+ (=9),t+ (—S)) = q(s,t+ (—S)> < 4.
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Since t + (=95) € Sgym(H), we see that t + (=S5) € Syo(H). Therefore, t (=t + (=S5) +95) is
selfadjoint. [
Let V be a Kato-Rellich potential such that

V =V +Va € LP(RY) + L>=(R").

If Ve L*, then —A + V is selfadjoint. Hence, we may assumed that V is unbounded. For
sufficiently large n € N such that ||V3||cc < n, we define

Zni={x € RY |V (2)| > n}.
Then we can see the following assertions.
Vin(@) = Vil@)xz, (2) (= Vie)xz, (@)
V() = V(@) = Vinl(@) (= (Vi = Via) (@) + Va(a) ).
-V =Vig+ Vo, € LP(RY) + L*(RY)
- IVinllzr — 0 as n — oo by Lebesgue convergence theorem.

Now, let —A = B/A, where H*(RY) =2 M(A). And let V = D/C. Since dom(—A)(= AH) C
dom(V)(= CH), 3X € B(H) such that A = CX by Douglas’s majorization theorem. Then,

G=A+V, A+ V) = q(B/A v D/C,BJA + Vg,n/J) — q(B/A + DX/CX,BJA + Vg,nA/A)
= q((B+ DX)/A, (B +Va,A)[A) = DX = Vi, A

—[VCX ~ VoA (D =VC)
— VA= Vau Al = [V = Van)All = [[VinAll

Moreover,
VinAll = sup [[VigAg|= sup [[VigAgl = sup [Vinfll (f:=Ag)
llgll=1,9€L? lAglla=1 1l gr2=1
< sup [[Viplleel[fllee < sup [Vigllee - Cll fllaz (3C > 0)
1l r2=1 1l r2=1

=C|Vipllze =0 (n— 00).

Remark 6.1 We apply the following relations as above. 213 + % = %

H*(RY) — LYRY), where {q:oo (V=123
0<g<(z—%)" (N=4).

In summary, this means that ¢(—A +V,—=A+V,,) = 0 (n — 00). On the other hand, since
Vs, is a bounded selfadjoint operator, it follows from Lemma 6.3 that a radius of —A + V3, can
be taken by a radius § = \/Ti of —A. Therefore, the selfadjoint operator —A + V5, is sufficiently
near to the semiclosed symmetric operator —A 4+ V' so that their distance is within % for large

n. Hence we conclude that —A + V' is selfadjoint.
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On reducing subspaces for a class of Toeplitz
operators on weighted Hardy spaces over bidisk

Sapporo Seishu High School EJFE B (Shuhei Kuwahara)

1 Introduction

Let H be a Hilbert space and B(H) a set of bounded operators on H. A subspace X in H
is an invariant subspace for A € H if AX C X. Moreover X is a reducing subspace if X is an
invariant subspace for both A and its adjoint A*. The reducing subspace X is called minimal if
the reducing subspaces contained in X are trivial.

Stessin and Zhu [6] characterized the minimal reducing spaces for shift operator with finite
multiplicity on the weighted Hardy spaces over the unit disk. Let H2(D) be the weighted Hardy
space over the unit disk which consists of analytic functions with finite norm determined by the
weight w. Put S the shift operator on H?2(ID).The statement is as follows;

Theorem 1.1 Let N be a natural number. Then there are N minimal reducing subspaces for SN
and therefore 2V reducing subspaces under some appropriate condition with the weight; otherwise
there are infinitely many minimal reducing subspaces for SV.

For example, if H2(D) is the Bergman space, then there are N minimal reducing subspaces for
SN which are in the form of

X, = Span {z"™": £k =0,1,2,...} forn =0,1,2,..., N — 1,

where Span denotes the closed linear span of a subspace. Moreover there are 2V reducing subspaces
for SN consisting of X,,’s.

There are several approaches to generalizing the results in [6]. In this presentation, we consider
a weighted Hardy space over bidisk. The definition are as follows; let w = {(w;,w2)} be a set of
positive numbers with

w(n+1,n w(ny,ng +1
sup(l—Q) < oo and sup winy,ny £ 1) < 00. (1)
w(ny,ng) w(ni,ng)

The weighted Hardy space H2(ID?) is a Hilbert space of analytic functions over the bidisk which
satisfy

112 =D lalnn, ne)Pw(ng, no) < oo,
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where f(z,w) = > a(ny, ng)z™w". From the condition (1), we see that multiplication operators
defined by coordinate function are bounded.

Fix natural numbers N; and N,. As one of the extention of [6], we determined the reducing
subspaces for multiplication operators defined by 2 and w™? in [2]. In the next section, we will
see other generalizations of the results in [6].

2 Main results

Assume H?(D?) is the Bergman space over the bidisk. Lu and Zhou [5] determined the reducing
subspaces for the multiplication operator defined by 2™ w™'. Albaseer, Lu and Shi [1] determine
the reducing subspaces for the Toeplitz operator defined by 2N w™z.

We note that we obtain the results on general H?(D?). In this conference, Theorem 2.1 was

presented; for definition of transparent polynomial of function, see the end of section 2.

Theorem 2.1 ([3]) Let N be a natural number and M ,~.,~ the multiplication operator defined by
ZNw™N . For a reducing subspace X for M~ ~ there is a transparent function such that the reducing
subspace generated by the transparent function is contained in X . Moreover if X is minimal, then

X is generated by the transparent function.
After the conference, we obtain Theorem 2.2 which will be appeared in [4];

Theorem 2.2 ([4]) Let N be a natural number and Ten,, the Toeplitz operator defined by zNw.
For a reducing subspace X for Tin, there is a transparent polynomial such that the reducing
subspace generated by the transparent function is contained in X . Moreover if X is minimal, then
X is generated by the transparent function.

Roughly speaking, a function is called transparent if a part of terms in the function cannot
be removed under shift operation, the adjoint of shift operation and linear operations. The
transparent function or polynomial will be the generator of the minimal reducing subspaces.

3 Proof of Main results

The main idea of not only the statement but also the proof is in [6]. In this report, we present
the summery of the proof. The proof consists of four steps;
(D)If X is a reducing subspace and (n1,ns) is the minimal multi-index of functions in X, extremal

problem
n1+n2

sup{Re f(0,0); f € X}

o™ z0"2w
has a unique solution G.

(2)Each terms in the function G cannot be removed under shift operation, the adjoint of shift
operation and linear operations. Therefore GG is transparent.

(3)The reducing subspace generated by G is the smallest reducing subspace contained in X.
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(4)Moreover if X is minimal, then X is equal to the reducing subspace generated by G.

We have some possibility of connecting the study of reducing subspaces with that of the com-
mutants. Using the results in this report, the speaker would like to study the commutants of some
operators.

1] M. Albaseer, Y. Lu and Y. Shi, Reducing subspaces for a class of Toeplitz operators on the
Bergman space of the bidisk, Bull. Korean Math. Soc, 52(2015), 1649-1660.

2] S. Kuwahara, Reducing subspaces of weighted Hardy spaces on polydisks, Nihonkai Math. J.
25 (2014), 77-83.

3] S. Kuwahara, Reducing subspaces of multiplication operators on weighted Hardy spaces over
bidisk, to appear in J. Math. Soc. Japan.

[4] S. Kuwahara, Reducing subspaces of a class of Toeplitz operators on weighted Hardy spaces
over bidisk, to appear in Bull. Korean Math. Soc.

[5] Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space
over bidisk, J. Math. Soc. Japan. 62 (2010), 745-765.

[6] M. Stessin and K. Zhu, Reducing subspace of weighted shift operators, Proc. Amer. Math.
soc. 130 (2002), 2631-2639.
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Commutativity of self-adjoint elements

Osamu Hatori (Niigata University)

1 Introduction

Let A be a unital C*-algebra. An element a € A is called self-adjoint if @ = a*. The set of all
self-adjoint elements in A is denoted by Ag,. It is a real-linear subspace of A. A matrix in M, (C),
the C*-algebra of all complex n x n matrices, is self-adjoint iff it is a Hermitian matrix. If A is
commutative, then the theorem of Gelfand-Naimark asserts that A is isometrically isomorphic to
C(X) of all complex-valued continuous functions on maximal ideal space X of A. A self-adjoint
element a € A is called positive if o(a) C {r € R:r > 0}. The set of all positive elements in A is
denoted by A,. A matrix in M, (C) is positive if and only if it is a positive semidefinite matrix.

In this note we exhibit the commutativity of C*-algebras and pairs of self-adjoint elements
according to [1]. We begin with a classical theorem of Jacobson.

e Let R be a ring. Jacobson proved the following: Suppose that Vz € R dn(x) > 1 with
2™*) = . Then R is commutative.

e N. Herstein give a generalization of a theorem of Jacobson (Amer. J. Math. 73 (1951),
756-762).

After that several conditions for a C*-algebra to be commutative are studied.

e Sherman (Amer. J. Math.,1951), A, is a lattice,

e Ogasawara (J. Sci. Hiroshima Univ.,1955),a > b always implies a? > ?,

e Fukamia and Misonou and Takeda (Tohoku Math. J.,1954), A has decomposition property,
e Nakamoto (Math. Japon., 1979/1980), in terms of spectrum of elements,

e Wu (Proc. AMS, 2001), order characterization of commutativity, e*™¥ = e*e? for all z,y ,

e Ji and Tomiyama (Proc. AMS, 2003) : existence of continuous monotone scalar function on
the positive axis which is not matrix monotone of order 2 but operatormnotone on A,. A
local characterization. exp x is two positive.

Algebraic character are the following:

e Kaplansky (Dixmier’s book, 1969), 0 is the only nilpotent element,
e Jeang and Ko (Manuscripta Math., 2004): properties on the functional calculus,
e Beneduci and Molnar (Jour. Math. Anal. Appl., 2014), K-loop properties

e Molndr (Abstr. Appl. Anal. 2014), algebraic properties of power functions, the logarithmic
and exponential functions, and the sine and cosine functions.
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2 Theorems of Jeang and Ko

The following is a theorem of Jeang and Ko [2].

Theorem 1 (Jeang and Ko). Let A be a unital C*-algebra. Let f,g: I — C be a non-constant
complex-valued continuous functions on a degenerate interval. Suppose that

f@)g(y) = g)f(zx), z,y€ Asy with o(x),0(y) C I.

Then we have that A is commutative.
We look at shortly the way of Jeang and Ko.

Definition 2.1. Let A be a unital C*-algebra. Suppose that f : I — C is a continuous function
defined on a non-degenerate interval. Let

f(Agq) = the complex linear span of {f(x): x € Agy,o(x) C I}.
We say that

(1) f densely spans A if f(Asa) is dense in A.
(2) f totally spans A if f(Asa) = A.
Jeang and Ko [2] in fact proved that

Theorem 2 (Jeang and Ko). Let A be a unital C*-algebra. Suppose that f is a non-constant
complez-valued function defined on a mon-degenerate interval. Then [ densely spans A, i.e.,

f(Asa) =A

As a corollary

Theorem 3 (Jeang and Ko). Let A be a unital C*-algebra. Suppose that f,g : I — C are
non-constant continuous functions defined on a non-degenerate interval I. Suppose that

f(@)g(y) = g(w)f(zx), 2,y € Ay with o(z),0(y) C I.

Then A is commutative.
The purpose of this note is to exhibit the following according to [1]:
(1) a local version of Theorem (Jeang and Ko),
(2) a negative answer to the problem posed by Jeang and Ko [2].
Simply a local version of a theorem of Jeang and Ko might be the following.
Question 4. f,g: I — C, continuous, non-constant

If x,y € Ay, satisfies

=



Sometimes it is true and sometimes it is false.

e True for f(t) = g(t) = exp(t).

Suppose that expxexpy = expyexpx for x,y € Ag,. Then p(exp z)p(expy) = p(exp y)p(exp z)
for any polynomial with real coefficients. By the Weierstrass approximation theorem for con-
tinuous functions, there exists a sequence of polynomials which uniformly approximate log -
on a compact set which include the union of the spectrum of z and y. Hence we have

Ty = Y.
e False for f(t) = g(t) = exp(it).

If
0 271 01
A_(—Qﬂi 0>’ B_<1 0)7
then ¢4 = E, hence e"e'? = ¢'Peid while AB # BA.

e It is easy to have a similar example for f(t) = g(t) = sint, cost; false for f(t) = g(t) = sint
or cost.

e The Cantor ternary function is constant on an interval. Hence it is false for the Cantor
ternary function.

3 Localization of theorems of Jeang and Ko

In this section we exhibit a local version of theorems of Jeang and Ko. The following is proved in

1].

Theorem 5. Let A be a unital C*-algebra. Suppose that f : I — C is a non-constant complez-
valued continuous function on a non-degenerate interval I. Let a € A,,. Then a is in the closed
linear span of

{f(t+sa):t,s e R,o(t+ sa) C I}.

Proof. Put L = {f(t + sa) : t,s € R,o(t + sa) C I}. Suppose first that f is continuously
differentiable. Then
(f(to +sa) — f(to))/s — f'(to)a € L.

We can choose f(tp) # 0. Hence a € L.

Next we consider the general case. Without loss of generality we may assume that / = R. Let
w : R — R be a non-negative continuously differentiable function whose support is contained in
(=6,6) for a small § > 0 such that ffdw(s)ds = 1. Put

fult) = / = puldy. te (51— 1)

Then f, is continuously differentiable, and f,, is non-constant for a sufficiently small §. As
fw(a) € L, we have f/ (to)a € L, where f/ (ty) # 0. Hence a € L. O

By the above theorem we have the following (cf. [1]).
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Corollary 6. Let A be a unital C*-algebra. Let f,g : I — C be a non-constant complez-valued
continuous function on a non-degenerate interval I. Let x,y € Asq. Suppose that

f(t+sx)g(t' + s'y) = g(t' + s'y) f(t + sx)

for every quarter t,s,t',s" € R witho(t + sx),o(t' + s'y) C I. Then we have xy = yx

4 A problem of Jeang and Ko and a negative answer

Recall that f(As,) = the complex linear span of {f(a) : a € Ay,0(a) C I}. Jeang and Ko
proposed the following problem in [2].

Problem 7. Does any non-constant continuous function f totally span A?
f(Ag) = A?

They give a partial answer to the problem in the sense that it is the case if f is strictly monotone
[2]. The following is a negative answer to the problem. A precise proof is given in [1].

Example ([1]). For the Cantor ternary function ¢

1 ¢ (C([0,1])sa)-

References

[1] O. Hatori, Commuting pairs of self-adjoint elements in C*-algebras, Math. Slovaca 67 (2017),
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2] J.-S. Jeang and C.-C. Ko, On the commutativity of C*-algebras, Manuscripta Math. 115
(2004), 195-198
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Commutativity for C*-algebras via gyrogroup
operations

Osamu Hatori (Niigata University)
Toshikazu Abe (Ibaraki University)

1 Introduction

Let A be a unital C*-algebra. Recall that an element a € A is positive iff a = ¢* and o(a) C
{r e R:r >0} iff a = b*b for some b € A. In this note we denote by A7' the set of all positive
invertible elements in A. The following is well known.

e C(X){' ={f € C(X) : f > 0}, where C(X) denotes the commutative C*-algebra of all
complex-valued continuous functions on a compact Hausdorff space X.

e Unless A is commutative, ab need not be positive in general for a pair of positive elements
a and b.

) Ajrl need not be an group.

e A7 is a twisted subgroup of A7!, i.e., ab~ta € AL' for every a,b € AL, where A~ is the
general linear group of A.

In this note we exhibit the commutativity of positive elements in a unital C*-algebra according
to [1].

Fact 1. Suppose that a and b are positive. Then ab is positive iff ab = ba. Hence A is commutative
iff AT is a group.

Proof. 1f ab is positive, then ab = (ab)* = b*a* = ba. Conversely if ab = ba, then az and b
commute since a2 is approximated by polynomials of a. Thus ab = azba? is positive. O

Although Ajrl is a twisted subgroup of A™1, Ajrl need not be a subgroup of A~

2 Gyrocommutative Gyrogroups
In fact Ajrl is a gyrocommutative gyrogroup.

Definition 2.1. A groupoid (G,®) is a gyrogroup if there exists a point € € G such that the
following hold.
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(G1) Va € G e® a = a,
(G2)YVa € G 36 a st Cad®a=ce.
(G3) Ya,b,c e G Jlgyrla,blce G s.t. a® (b®c)=(adb)dgyr|a,blc.
(G4) gyrla,b] is an gyroautomorphism for Va,b € G
(G5) Va,b € G gyrla @ b, b] = gyr|a, b].
Gyrocommutative if the following (G6) is also satisfied.
(G6) Va,be G a® b=gyra,b](b® a).
The following is exhibited in [2].
Theorem 1 (A;' is a gyrocommutative gyrogroup). For 0 <t € R, put
a® b= (a%bta%)%, a,be ATt

Then (Ajrl, @) is a gyrocommutative gyrogroup. The gyrogroup identity is the identity element e
of A as C*-algebra. The inverse element Oa is a~' For a,b € A;l put

Bl
(M
M

X = (azbla®) 2a2b?,
Then X is the unitary part of the polar decomposition of azbs and
gyr,[a,blc = XcX*, a,bce A7

Note that Beneduci and Molnar [3] showed that (A7, ®1) is a K-loop, which is equivalent to
a gyrocommutative gyrogroup.

3 Commutativity via gyrogroup operation

Beneduci and Molnar [3] proved that ab = ba if and only if a®;b = b&; a. The following is proved
in [1].

Theorem 2. Let a,b € A;'. The following are equivalent
(1) ab = ba,
(2) ab is self-adjoint,
(3) ab is positive,
(3)° the unitary part of ab is in the center of A,
(4) A(Y)t > 0 such that gyr,[a,b] is the identity map on AT,
(5) V)t > 0 such that (a ®; b) @y c = a®, (bd; c) for every c € AL,
(6) 3(V)t > 0 such that a &, b =b @, a,
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(7) 3(V)t > 0 such that ab = a @, b.

Proof. We give a sketch proof. By an easy calculation we have (1), (2) and (3) are equivalent.

It is trivial that (3); ab is positive, is followed by (3)’ the unitary part of ab is in the center of
A.

Assume (3)’; the unitary part of ab is in the center. As gyr,la, b] is the unitary transformation
by the unitary part of ab, we infer that gyr,la,b] is trivial; (4) for ¢ = 2 holds; gyr,[a,b] is the
identity map on A7'.

Assume (4) for t = 2; gyry[a, ] is trivial. Then (5) for ¢t = 2; (a @2 b) @2 ¢ = a By (b B2 ¢) for
every ¢ € A7', is trivial by (a @2 b) @9 gyT,[a, blc = a By (b @2 c).

Assume (5) for ¢ = 2. Then gyr,[a, b is the identity since

(a ©2 b) @2 gyrsyla,ble =a @2 (b®2c) = (a D2 b) B2 c

for every ¢ € A7, Thus (6) for t = 2 holds; a @y b = b @ a.
Suppose that (6) ;

t 1 t t 1
t t

(a%btai)
Then,

and

As a (resp. b) is approximated by a polynomial of a2 (resp. b2) we have ab = ba. Then (1) holds.
The implications (1)—(7) and (7)—(3) are trivial. O

Applying Theorem 2 to get
Corollary 3. The following are equivalent.

(1) A is commutative,

(2) A(Y)t > 0 such that gyr,[a,b] is the identity map on AT' for Ya,b € A7,

(8) 3(V)t > 0 such that (a ®; b) Bt c = a ®; (b D¢ c) for Va,b,c € AT,

(4) 3(V)t > 0 such that a &, b="b®, a for Va,b € A7,
(5) V)t > 0 such that ab= a ®; b for Va,b € A",
(6) 3(Y)t > 0 such that (AT, &) is a group,

(V)

(7) V)t > 0 such that (A", @) is a commutative group.
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Related subjects of Invariant Subspace Problem in the Hardy
space

Keiji Izuchi, Niigata University

[1] The Hardy space H? on D. 6 € H? is called inner if || = 1 a.e.
on T. For a € D, write b,(z) = (z — «)/(1 — @z). For distinct points
{ay,}n, in D and positive integers {k, },, satisfying >~ k,(1 — |a,|) <
oo, define

00 = fon
b(z) = H (]a_aT b, (z)) , a Blaschke product.
n=1 n

For a bounded positive singular measure p on T, define

et+z .
Yu(2) = exp ( - / pr— u(e”)), a singular inner function.
T it —

For ¢ € L*(T), the Toeplitz operator is defined by T,,f = P(pf) for
f € H?. Wehave T » = T, and T, T7 are called the forward, backward
shifts, respectively. A closed subspace M of H? is called invariant if
T,M C M. When M # {0}, by the Beurling theorem M = §H? for an
inner function 6. A closed subspace N of H? is called backward shift
invariant if 7*N C N. In this case, H*> & N is an invariant subspace.
When N # H?, N = H? © §H? for some inner function 6.

For f € H> and M C H?, write [f]. and [M], the smallest backward
shift invariant subspaces of H? containing f and M, respectively.

[2] Invariant subspace Problem. Let H be a separable Hilbert
space. Write B(H) the set of bounded linear operators on H. A closed
subspace M C H is called invariant for 7" € B(H) it TM C M.

Invariant subspace Problem (ISP): For every T' € B(H), is there
a proper invariant subspace M for T' (a non-cyclic vector in H for T)?

An operator T' € B(H) is called universal if “undefined here”. By
the definition of the universality, ISP is equivalent to the following.

Problem A. Let T' € B(H) be universal. For every invariant sub-
space M for T with dim M = oo, is there an invariant subspace M, for
T satisfying {0} & My G M?

Fact 1 (Caradus, 1969). For T" € B(H), if dimkerT" = oo and
TH = H, then T is universal.

Let U ={T}; : p € H®,1/p € L>®(T),dimker T}, = oo}. Then by
Fact 1, it is not difficult to see that 77, € U is universal.
30
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Fact 2. Let 6 be an inner function. If 8 is not a finite Blaschke
product, then 7} is universal.

Then ISP is equivalent to the following.

Problem B. Let 6 be inner but not a finite Blaschke product. For
every invariant subspace M C H? for T; with dim M = oo, is there an
invariant subspace My for Ty satisfying {0} & My & M?

Fact 3. Let 0 be inner and M C H? a closed subspace. If T*M C M,
then Ty M C M.

Cowen-Gallardo’s strategy. Let 6 be inner but not a finite Blaschke
product and M C H? an invariant subspace for T with dim M = oo.

Find a nonzero f € M such that M ¢ [f].. Then f € M N[f]l. G M
and T (M N [f].) € M N [f]. (by Fact 3). Hence ISP is solved!

Difficulty. For an inner function # which is not a finite Blaschke
product, it is difficult to describe all invariant subspaces for T}

Today’s subject. Let 6 be inner but not a finite Blaschke prod-
uct. For which closed subspaces M C H? with dim M = oo, is there a
nonzero f € M such that M ¢ [f].7

[3] Cowen-Gallardo’s questions. Here 6 denotes inner but not a
finite Blaschke product. There are many f € H? satisfying [f]. = H>.

Question 0. Does every closed subspace M C H? with dim M = oo
include a nonzero f such that [f]. # H? (f is non-cyclic for T)?

Nikolski’s answer: NO. Let S = {n;}; be a sequence of positive
integers such that inf;~xn;/n, > 1 (a lacunary sequence). Let f =
Y nes f(n)z" € H? and f(n) # 0 for every n € S. It is known that
[fl = H?. Let S = {J,—, Sk be a union of disjoint infinite sets. For

each k > 1, let fy = 3, ¢ f(n)2" € H2. We have f;, L f; for k # j,
and set M = @,-, C- fx. Then every nonzero g € M, {n : j(n) # 0}
is a lacunary sequence, so [g], = H?. O

Q1. Does every closed subspace M C H? with [M], = H? include
f such that [f], = H??

Q2. Does every closed subspace M C H? & 0H? with [M], = H*> &
6H? include f such that [f], = H* © 0H?? (See Question 3.)

The following three questions are posed by Cowen and Gallardo [1].
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Question 1. Does every closed subspace M C H? with dim M = oo
that is a proper (7) invariant subspace for an operator in U/ include a

nonzero [ such that [f], # H??

Question 2. Let M C H? be a closed subspace with dim M = oo
such that T'M C M for some T € U and 6 be inner satistying M C
H? © 0H? (we may assume [M], = H>© 0H?). Is there always f € M
such that {0} ¢ [f]. & M?

Question 3. Is there a closed subspace M C H? with dim M = oo
and [M], = H? © 0H? for some inner 6 such that [f]. = H>© 0H? for
every nonzero f € M?

The following example answers to Question 3 affirmatively.

Example 1. Consider that 6 = 15,. Take {t,},>1 such that 0 <
tn < tpy1 and &, — 1. Set E, = ¢y 5 H* © ¢y, 5, H* and &, =
wtn-klal /wtnal = w(tn+1_tn)61' Then

H? © s, H? D thy,5, H® © 5, H? = @@%&Hz SEUNRN &
n=1

=P s (H 0 & H?).
n=1

Take f, € H> © &, H? with ||f,|| = 1. We have s, fn L 45, fi for
n #i. Take {c,}n>1 in C such that Y>> |¢,|? < oo and ¢, # 0. Then
Z CnWt,6, fn € H*© ¢61H2‘

n=1
Take a sequence of mutually disjoint sets of positive integers { Ny }x>1
such that N is an infinite set. For each k£ > 1, let

F, = Z Cnl/)tnzhfn S H2 @¢§1H2'
neNg
We have Fy, L F; for k # i, and let M = @, ,C - Fj,. Then M C
H? &5, H?, M is closed and dim M = oo.
It is not difficult to see that for f € H* & s, H?, [f]. = H* © vs, H?
if and only if f } 15, H? for every 0 < t < 1. Then [F|, = H>© s, H?
for every nonzero F € M. O

Remark 1. Example 1 also answers to Question 2 negatively in
some sense. Let M be given in Example 1 and T = quél € U. Since
M C H? & s, H?, T}, =0on M, soTj M C M. By Example 1,
M G H? © 15, H? = [f], for every nonzero f € M.
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For o € D with o # 0, let o = (s, — ) /(1 —anps, ). It is known that
¢ is a Blaschke product. We also have T = @l on M, so TAM C M.
Note that T;(C- F) C C- F for every F' € M. I no not know what is
real Question 27 O

Q3. Let u be a positive singular measure on T. Is there a closed
subspace M C H? &1, H? with dim M = oo and [M], = H*> © ¢, H?
such that [f]. = H? © ¢, H? for every nonzero f € M?

Next, we shall study Q2.

Proposition 1. Suppose that (o) = 0 for some o« € D. Let
M be a closed subspace of H?> & §H? such that [M], = H> & 0H>
and dim M > 2. Then there exists a nonzero f, € M satisfying that
[f]« # H? © 0H? for every f € M with f L fo.

Proof. Write 8 = b,60; for an inner function #;. Then

th
1—az

M) € H>cHH?,

Put fy = PM< b1 ) # 0. We have the assertion.

1-az
In Proposition 1, both cases occur; [fo]. = H?> © 0H? and [fo], &
H?*© 0H?.
Example 2. Let 6, be a singular inner function and 6 = 26,. Let
M :=[0). = H*© 26,H* = H* © 0H".

We have 6(0) =0 and M = (H*©6,H*)®C-0,. Let fo € M be given
in Proposition 1. We have fo = Py0; = 60y, so [fol« = [01]. = H*©0H?.
Since 1 € M and 1 ¢ H*© 6,H*, M = (H*© 60,H?*) +C - 1. Let

My={feHc0H*: f11}aC-1.
It is not difficult to see that
H*©60,H* = [{f e HHS 0, H? : f L1}] .
Then [M,], = H*©0H?. Let f; = Py,0,. We have f; = (Py,0;,1)1 =
0,(0)1 and [fi]. = H? © 2H? 4 H? & 0H?.
We shall show the existence of f3 € M satisfying [f3]. = H>© 0H?.
There is singular inner , such that 65 = 0;. Then

1 —605(0)8,, 65(1 —05(0)8,) € H>© 6, H>.
We have
fa 1= 05(1 — 05(0)8;) — 05(0)(1 — 65(0)0,) € {f € H* 0, H? : f L 1}
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and f3 := fo+1 € M;. Since T f3 = Ty 1 = 6:(0)1, C-1 C [fs)..
We also have T7, f3 = —0,(0)T70,, so Ty € [fs),. Since [T*6), =
H?60,H? H*©0,H? C [f3].. Hence 05(1—05(0)0,) € [f3].. Therefore
H*©0H* = (H>00,H*) @ 0,(H* © 0,H?)
C (H?©0,H?) + [62(1 — 0:(0)6:)], C [f]..

Thus H>* 6 0H?* = (H*© 6,H*) +C -1 C [f3]. C H*© 0H?. O

Proposition 2. Let # be a Blaschke product and M be a closed
subspace of H? © 0H? such that [M], = H?> © §H? Then there is
f € M satisfying [f]. = H* © 0H?.

Proof. Write

n=1
For 7 > 1, let
0
%= b,
Then
6;
H?*©0H? = (H*© 0;H*) @ C - :
1—-a;z

Since [M], = H>© 0H?, f [

—<— for some f € M. Let
J

M, : {feM PR }

1—0sz

Then M; is a closed subspace of M and does not contains a non-void
open subset of M. If U;’il M; G M, then there is f € M such that
fL0;/(1—a,;z) for every j > 1. In this case, it is not difficult to see
the assertion. If U;’il M; = M, then by the Baire category theorem
there is jo > 1 such that M, contains a non-void open subset of M.
This is a contradiction. 0

Remark 2. When 6 is singular inner associated with a discrete
positive measure, Proposition 2 also holds (in the same way). For, write
6 = 1), where 1 = Zj cjoy,. For {t,}, satisfying 0 < ¢, < tp41 — 1,
use a countable set

(o]

{( 11 %j&kj)T;%ktnaAk}k,n

=L,k
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Q4. Let 6 be singular inner associated with a continuous positive
measure and M be a closed subspace of H? & §H? such that [M], =
H? © 0H?. Is there f € M satisfying [f]. = H*> © 0H??

[4] Another example for Question 0. Let 6 be a non-constant

inner function and g a nonzero function in H?. Write g = > > a,z".
For f € H*> © 0H?, we define

- i a, fO".
n=0

Since fO™ L fO™ for n # m, we have
12(f,9)|1* = Zlanl LEIZ = 111191

Then ® : (H? 6 0H?) x H* — H? is a separately bounded linear
operator and bounded below. We have

(1) Zanfen L= Q(f,Tig)

and for f; € H? © 0H?, (2(f. 9), ®(f1.9)) = (f. f)llgll>
Proposition 3. If [f], = H*©60H? and [g]. = H?, then [®(f, g)]. =
H?.
Proof. Since [g], = H?, for k > 0 there is a sequence of polynomials
{pn}n=1 such that T g — 2" as n — co. By (1),

T: 0 ®(f,9) = O(f,Ts g) = ©(f, =) = f0".

Then f0% € [®(f,g)]. for k > 0, so f € [®(f,g)].. Since [f]l. =
H? & 0H?, we have H?* © 0H?* C [®(f, g)]+. Since

TZ(f0) = (TZ1)0 + F(O)TZ0,

we have (T f)0 € [®(f, g)].. Repeating the same argument, (T2 f)6 €
[®(f, g)]« for every j > 0. Hence (H*S0H?)0 C [®(f, g)]. Repeatedly
we have (H? © 0H?)07 C [®(f,g)]. for every 7 > 0. Hence we have
H? = @2, (H? © 0H?)6? C [®(f,g)].. Thus we get the assertion. [

Example 3. Let g € H? satisfy [g], = H? and 6 = 45,. Let
M be a closed subspace given in Example 1. Then by Proposition
3, ®(M,g) := {®(f,g9) : f € M} is closed, dim®(M,g) = oo, and
[®(f,9)]s = H? for every f € M. O
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CYCLICITY OF REPRODUCING KERNELS
IN WEIGHTED HARDYBSPACES OVER THE BIDISK

SRith - FRE QLEERS)

1. INTRODUCTION

HREH C" OFRE Q & L, Hol(Q) % Q _EoIEHIBIS ek, c %
C" LoZHABRE § %, H C Hol(Q?) % Hilbert 22[H & § %,

E&E 1. M%ZHOHETZEEET 2, Z2OEE, ATEDOLEHEA p e C”
IRLT, pM C MDD DR 6IE M IZAETH S &I,

IoIT, HOWIEA BT LTRD K I ICEKFT 5 ¢
o [Elyl&>T, EZ2&T H DIRNDAKIRITZERM 2 2§,
o [Ely=M7%E6I1X, E% M DOEBES LS,
o M DERECDEFZORMEEZ 7 v 7 EW, rankyM 12
ko TET,
1949 1 Beurling 12 & > T, Hardy 22 H*(D) DAZER 7 22 D Ff
AT Mfrbinte,

Beurling D (1949). M % H*(D) DEFD%EME T2, 2D L &,
MDBAETHBHI L, M = o(2)H* (D), p(z): NiBBI%., TH 2 2
EIZFfETH B,

COEMED, MozM=C-p3bhb,
(M © zM|p2my = [¢lmzmy =M and  rankgzmy M =1

Zhi7z 4, DM S 2Mly = M % Beurling property &9, LA ED
&)z, H*(D) DERED AL 22[H7)3 Beurling property % £f2 703,
1 2% Bergman Z2[] [1] %° Dirichlet Z2[H [6] ICB W T HAERTH 5 Z &
DHILNTWS,

TlE, HEEIHBIBZERTIZE D TH B h, W FE 2 REIFEZERH C?
O 2 EHEM AR D? £ Hardy 24 % H?(D?) TE T,
& 2. H*(D?) DA M M DAL TH S 13, 2M C M »>D
wM C M %3 EEIcw), £, A4 E c HX(D?) 2&0R/ID
AEE T2 %2 [E] TR,

2 BT EEAERIBDY 2 D & 5 DT, Beurling property 1& [M S [zM +
wMly =M EEEHRZ 5N 5, TTICINETIC H(D?) OARLHIY



2%[H-C Beurling property Z£i7 2\ OVEET 5 Z EBHIL LTV
5, LPL, 20513 TRTT v 732 EOARERZERMTHY, 7
V7 1 DA ZEENS D W TIH S 2> Tk, ZOH, 1991
12 Nakazi 1IZ & > TROMERRB I 7z -

EIRE 3. fER OB f € H2(D?) 1T &> TERI N AEH 72 M, =
[f] lexFL T,

Mio[zMy+wMs =C-g, g#0
ho My = [g] &Mtz T,
AR TIZ, ZORBEICOWTER S,
2. M; & H*(dp) DBIR
FEZBIBL f € H>(D?) 1o LT,
dp = |f|*dm on T?

EBL, 22T, dnidT? LolEBbIn v _R—=JHlETH %,
512, C? LOLIHABRC D L2 (dp)-PlE%Z H?(dp) I k> TERT 5,

MmE 4. RO f e HX(D*) I LT, My = fH*(du) TH 5,
EE 5. (1) A e D2IINT 2 H?(du) DT K)) € H*(dp) 13,
f()‘) = <f7 K;/»H?(du) for all f € H2<d:u>
Zii 7z TR TH 5,
(2) BE%L f € H?(dp) 3[R 27 bV TH B L, fCHS H?(dp) THI%
ThbEEIINVT,

i 6. fe HX(D?) &35, ZDLE, [fK)] = My Ziilifcd I & &,
PR K 08 H? (dp) DR 7 v Tdh 5 2 EIRAETH 2,
3. iR

[4] T, BRI BIZERT 22 812k D, IR DD 2 &8
Hor o7
IR 7. H*(dp) D3KER 7 P L THRWHAEREZRFO X 9 & f € H*(D?)
FEHIIE, FREORER L D EROROFERIIL D VOH TR L T b
EE 8. H2(dp) 3D? RICEHEAZROFEMZRO LI 7% f € HX(D?)
Nakazi DB RIS E T 2 LRBOKEME LR U TH 223, A

BT BEBEZIERIRZ P LTI WA LR TE R, 2o OfER
.4, 6RHASDEDIEICED. RBKD O EDDD D



FHE9. feH)D)EL, My=[f]tT 5, ZDLEZE,
[My © [2My + wMy]] # My
2 72 9 BEEL f ST B
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IFMYsBED D ZERICDWNT

|~

IR TR Pa[#E  #— (Toshikazu Abe)

B E

A. A. Ungar (& (W]#2) BEO—{b & LT (gyrocommutative) gyrogroup Z &z L, Fiik
FXSEw S B 1 2 LA R 7 > L RO RO BT RE I > W Toiigi 27> Tw %
([3]) . FHAH C*— BROIEMEED (gyrocommutative) gyrogroup & L COMIEZ L, %
D (gyrocommutative) gyrogroup & L T ORI & BWHFHEE & 232 v F LT3 2 & DR
TES (2, [1]). IN6DOWRIE, WTFNHHZRL TRV b 6 T HRICHIEZE
I L 22 R > T b, 2OV IBZERNICERIL 7 IR L, IEMMEEOREEICD
VTR TA S,

1 BA
XU ®IZ (gyrocommutative) gyrogroup DEHZLT 9.

&R 11 BTRVEAX 20 O ZIHHER ot X x X — X 5 (a,b) = aob 2 TEZ
72 (X,0) Z magma &9, BB ¢ X - X DEFHTEED a,b € X 1T LT olaob) =
P(a)o (b) 27§ & ZF (X,0) ROHORMERTH % L), (X,0) hoHARMEG A
DEA%Z Aut(X,0) TET.

EE 1.2 Magma (X,®) BRDOFEM (G1) 226 (GH) 22T/ & &, (X,®) & gyrogroup
ThHhbEV), IHITEME(G6) b/ T & Z, (X,®) & gyrocommutative gyrogroup TdH %
Ev 9,

(G1) BT e DIFET 5.
(G2) fEED a € GIZXW LT, WILSa DIFIET 5.
(G3) fEED a,b,c € GIZH LT, XDOHEXZ2T gyr[a,blc € G D —TRINHFET 5.

a® (bdc)=(adb) D gyrla,blc.

(G4) EED a,b € GIZXNL T, B c— gyrfa,blc X (G, @) LOACHMERTH S, T4k
b5, gyrfa,b] € Aut(G, @).

(G5) fEE®D a,b e GITH LT, gyrla®b,b] = gyr[a,b).
(G6) fEED a,be GITNLT, a®db=gyr[a,b](b® a).
RIZ (gyrocommutative) gyrogroup 1232\ THIZ 22 %2 —M{t L 7= gyrolinear space %

EFT S, ZUd Ungar DEFE L 72 gyrovector space DRUEIHEIZ D\ TDEEMD A % fili
L72bDTH 3.
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E#E 1.3 Gyrocommutative gyrogroup (X,®) tHEBR @ : R x X — X ;5 (r,x) — r @ x Difl
(X, ®,®) BRDEM (GLL) 226 (GL2) 22T § & &, (X,d,®) d gyrolinear space T
HBEWVT,

(GL1) fEEDxz e X WL T, 1@z =m=.
(GL2) fFED ri,reeRE 2z e X ITRHLT, (mn+m)x=(rmeoz)d (rne).
(GL3) fEBD r,m e RE 2z c X ITNLT, (rm)@x=rm (rn o).
(GL4) fEED reR & z,u,v € X T LT, gyr[u,v](r @ z) =r ® gyr[u, vz,
(GL5) fEED r,rea e R E v e X I LT, gyrlri @ v,ro @v] 13 X LOEEGL,
Gyrolinear space 13#BZRBO—MILTH %5, XKD X I, HARICHEMR - #5 - hrikE
AR bR ER I NS,
EEK 1.4 Gyrolinear space (X, ®,®) XK LT,
Lia,b|(t) :=a®t® (©a®b)

£9%, HL, a,be X, teRTHS, ZDELE, L[a,b|(R) Za & bZzilid X LD gyroline
£, Lia,b([0,1]) % gyrosegment ab &>, Lla,bl(3) % a & bD gyromidpoint £\>9,

JEHE DORIEZEIZ B T, gyroline (X}, gyrosegment (X157, gyromidpoint 1ZfREL
72 s i ISB 3 %,

2 FrhED Y v OEE
A C*— RO IEMMEEICN LT, RO XIHIICHEZERT 5.

T 2.1 o % BN C - B, gf{l % Z OIEfE T ko ES (EMNE) &35, oI
HLUC, @: P x it b Rx oo 7 ZRDEHICERT 2. TED
a,be o EreRICHLT,

adb = a ba%,

roa = a .

= NI

=X 2.1 (o1, ®,®) & gyrolinear space TH %,

RD K HZ o/t D gyrolinear space & LT ORI & B MRHE DRI IRV BIR2 S %
ZEBbA.

EX 2.2 o' Lolfild%x
d(a,b) = |[log(a © b)|

WK TEDS L, U Tompson metric TH 5, HL, || IFHRMC* R T D/ )L L

£95%. X7k, L ) )
Lla,b](t) = a2(a2b 'a2)ta>

TH5, LEDo>T, atb%Zilid gyroline l¥a & b%Zi#5 (Tompson metric iIZO\WTD)
IR & —Z L T3, KR gyromidpoint 1333 & —3 L Tw 5,
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3 EAZEE

Gyrolinear space [FFEZEMOHPY & L TEZEI N TV 5, THUIFRIB2EM & RO
METZDIERMFLCOLDTH S, Lo L, UALI L TOMEmE MM LR X
IATH T ERHEEZ ., ED XD BATIIRIEAER LR UHICGGER?HE, LX) hHT
BEODPRNDL D), Lo MEIFERECFETH 5, Z 2 TIERME ISR L TN
TH5,

EFTIFHA M2 ERLT LI LoD 5,

E& 3.1 (X,0,®) % gyrolinear space £ 5. X DEBTEE SH X D (gyrolinear space &
LTD) HPEMThd LI, SHBRERQICODVTHLITWEZEZW), Thbb, TE
Da,becSEtrcRIZHLT, a®dbel, r®acSTH?EZ ST X DIHTEHTH 5.

P22 & ARROFEIC X D PUT D 2 L DR TE 5.
EX 3.1 SV (X, 0,0) DETERTHS LE, (S,0,®) & gyrolinear space TH 5.

FE 3.2 {Sihaer & (X, 0,0) OHFEMELTZ. COLE, () S b (X,0,0) OHI%E
AEA

HMTh 5,

&K 3.2 (X,0,®) & gyrolinear space, A% X DA EHLETE. ZDLE, (X,0,R)D
H2EED 9B A ZHTESLE L TEHEU L DA Z S[A] TEL, AD»SHERIN
5 X DEIZERITH S L), S[A] IR AzEDL X OTZERO S L (EEBHRT) Db
O)T&') % %?ﬂ@ﬁéﬁﬂ*ﬁﬂﬁ@f:&), Aﬁ‘ﬁgﬂgéé@k %, S[{al,'-~ ,ak}] %%0: S[a1,~-- ,ak]
EFHLZEILT B,

—DDILH 6 BRI 1 22N D\ TR DFRIE 2N & FfRORT R 51 5,

£X 3.3 (X,9,®) & gyrolinear space £ L, ac X £T5. ZDLE,
(1) a2’ (X,®) DHNICTH 5 L E, Sla] = {a}.
(

(2) aBd (X, ®) DHAITETR WV E %, Sla] = {roa;r € RY. (Sa],®,®) & —RICHIZERH
TH5,

RIZ, ZODILHBERIN DI ERNIZOWTEZS, Sa, bl 122V THEZLLE, a,b
DEL SDLDHAILTH 25462 b € Sla] TH LA EOFRELSTHICOL>TLE )
DT, TOXIBIRWMTHR V@, blZDOVWTHEZDL I EICT S, EFOMEEMORRT & g L
T, ROFEPEREMIE L THH S, TNoHEE OB/ TIZEAZL TH 2 HNTH 5.

M 3.1 (X, ®,®) % gyrolinear space £ L, a,be,de X £§5, ZDEZ S[a,b] & S[e,d]
ZERZZA 9%, HL, a,be,diF X DRICTHEVSDEL, b¢ Slal,d ¢ Sl £ T 5.

5t 3.2 (X,®,®) % gyrolinear space £ L, a,be X £32%, TDEZ Sla,bj={a®a®
BRb;a, € R} DY LDOD,

FEM] 3.2 12DWT, BRYETDL) %I EORTEICZ 2 DD, B Z2RIFEE IO WTEAU
TVLIHEDH LDT, Sla,bl={a®a®Bb;a,B € R} DI LD7DITIZ Sla, b] D3
FIZOWTH U TCw 2%l BH 5. LrL, —MRIC gyrolinear space TIERDEFERDIKL L 72
WZEDNH D,
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adb = bda,
(a®db)@c a®(bsc),
re@(aeb) = readreb.

DT,

pRbdA®a € {a®ad®pba,fcR},
re(A@adpu®d) € {a®a®pfRb;a,B R}

EVno LI 2SR TIER, FHEE, KHIH 25 L2 RITHNT S

4 R2x217HOENE

HARII C* — Bt of DIEMEE o771 HSESRIC gyrolinear space & L COMEEFFD T LN L
7y, TITERHC S LT 2 <2 AR 2 B A 5 LILT 3, ZOLE, o7 = My(R)!

922 x 2 IEMEFHIRkTH 2. Thbb, XOY = X2YX3, roX = X" 12koT
(My(R), ®,®) 1& gyrolinear space TH 5.

RDZ EFFHUCHERTE 5, (S1, So BZNZIUHEIZOWTEHL T3 Z LIFHH ST
H2.)

ER 4.1 S = {X € Mo(R)[H X 13151}, So = {X € Ma(R)[Hjdet X = 1} 32zt
(Ma(R);!, &, ®) D5 %F‘EJ“C%Z)

TIT, S1 ¢Sl ELSL 24K TH 5.

- (e 0 (10 (e O _ (coshl sinhl _
=R 4'2‘4_(0 1>’B_<0 e>’0_<0 el>’D_<smh1 cosh1> £9%. 20

L&, AB,C,De MR THoT,

S = {(eg e%);a,ﬁGR}
= {<€; ?)@(é e%);a,ﬁeR}

= {a®A®d R B;a,f €R}

€7 cosh é sinh §
S2 = {( sinh § e_7cosh5)’%6€R}
e’ 0 coshd sinhé
o {<0 e‘”)@(sinhé cosh5>”y’5€R}
= {Y®Cdi®D;v,§ € R}
J:‘OT, 81:S[A,B], SQZS[C,D]TZ;)%
ZI27T, S; &Sy DRI ICRNT P ZH52TWE I EBbr5,

EX 4.3 WATHIRAEIEAIRTH L 2 056 (S,®) BHEZE L TVwE I Enbrb. E51T,
(S1,®, ®) IFEFDEKRTD 2 RITIBZERNC 2> TW5E, —H, (S, @) EHZHRL Tk,
L7235 T S b So FREEITIE W Db 5,
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HIE42% 2L, S[ABl={a®A®B®B;a,BER}, (y@C®S®@D;v,i e R} DX
I, FEMI 321K L THENRETEZ S, L L 2 2 TENTHIZ VTR 3.2 D
Wz TE S,

— (e O _ (coshl sinhl 1 s
EFE 44 A= <0 1>,D_ (Smhl cosh1> 9%, A De MR TH%, S[A D]

ADZERELTHS, HERICOWTHAL TV 30T,
{0 API®D;a,0 e R}U{p®@ DB AR A; A\, n € R} C S[A, D]
ThHhs, LaL,
e {a®APIR®D;a,d eR}YZ{u@DBARA; N\, neR}
o {uIDBINANpER Z{a® AP IR D;a,d € R}
THHIEBOPLDT, SAD|#{a®A®i®D;a,d e REL{p@DBAR@ A; N\, u € R} T
b5,

S 1 aRAGIRD=p@DOANRAERDLDD o, 0\ u DRLESZNE252%, 202
L0 EOHEREIHSTH B,

AaQADSRD =pu DO ALKETS. X, Y € MbR)T'ICHLT, XaY =
théf%ot@?,@WX@quMXdanﬁ%.::fr®A:<e %,s®

0 1
D = (Oshs SIhS) e L85, det(r @ A) = ¢, det(s @ D) = 1. L7hioT
sinhs coshs

det(c@A@IR@D) =¢, det(p@DPARA) =) TH23, Lo TURKELD a=1TH53.
Lo Ta®A®ID=p@DGa® A T,

e®coshd e2 sinh§
A®d® D o
v ADoE <e2 sinhd  coshd >
e®cosh? £ 4 sinh? £ (e + 1) cosh & sinh &
— 2 2 2 2
neboawd <(ea+1)cosh‘2‘sinhg cosh? & + ¢ sinh? 4

a@A®I@D D (1,1) 7l (2,2) KD e 512 >Tw5s, LEd>T, p@Dda® A
D (1,1) B3 (2,2) RO D e 1512755, Thbb,

e® cosh? % + sinh? % = ¢%(cosh? % + ¢ sinh? %)

CNEBEITIUE, (22— 1)sinh’2 =04k D, a=0FEpu=07Th3.
a=0DLE, aRA®IRD=pDdax Al D=peD tFEZHI5NE, L
72> Tod=pu7Ths,

u=0D¢tZ, M®D®Q®A:a®A:<

e®coshd €2 sinhé e* 0
o = 3 H MZ 5 = )
i(erinhé cosh § ) (0 1) EDITE, HERIZI=0TH 5,

DEDZEDS, aARIRD=pDOARALRDLZDD a,d,\, u DBFELEMIX
(Dao=XA=0028=p £7&, (a=A»25=p=07TH%, FEKEIZIZINHLEL
DEMNTH S EDEHICHEEETE ., O

ea

()?)ib,a®A@5®D:u®D@a®A

e 3.2 DRI B A3 > 72 Z £ 5 gyrolunear space 122 THUEZE & MRk, —XiG
&, —XM7, BR, Kotk EOiEmZIT ) LA ICiIRE 20 2T wIThnw I Ebd 5,
RIS, Ma(R)TME 3L OAERTESL Z LE2ANT 5,
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— (e O (e O _ (coshl sinhl -
EX 4.5 A_<O 1>,C_<O 6_1),D_<Smh1 cosh1> E9%, ZDLEE, AC,Dc

MyR)'ThoT, MbR)'={a®@A® (Y0 Ca®i® D)a,v,0 eR}TH2. Thbb,
S[A,C, D] = My(R);.

AR 2 LD X € May(R);' #a@ A0 (y® CO @ D) DBTHINS 2 LR+
Ths, XeMR)'ET2, a=logdet X &L L, det((—a) @A) = e = (det X)
Ths. 2IT, V=(-a)ALBITEY € Mb(R)J'5DT, Y& X € Mp(R)J'. %
7odet(Y @ X) = detYdetX = 12DTY @ X € S, TH5D., LAN>THHEL2LD,
YOX = y0C®6D L% 7,6 € ROFET 2. 1Y lo(YeX) =Y 2(Y2XY2)y 2 = X
Ths. Y '=aATHEDT, X=aAD(YyCBI®D) ThHs, O

S Rk

[1] T. Abe and O. Hatori, Generalized gyrovector spaces and a Mazur-Ulam theorem, Publ.
Math. Debrecen, 87 (2015), 393-413

[2] R. Beneduci and L. Molndr, On the standard K-loop structures of positive invertible
elements in a C*-algebra J. Math. Anal. Appl., 420 (2014), 551-562

[3] A. A. Ungar, Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of
Relativity, World Scientific, (2008)
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Ty A BANT MLVERYZE DR
DREEFDZERICDOWNT

FIRIE T B i (Toshikazu Abe)
HT KA HIARRI AR )53 F— (Keiichi Watanabe)

]

Abstract. AEDV AV v A X7 FILZERNCEIT 3 ERAERS ¥ A U’\7 VRS 22 diE, A U
ERIGIC X o TERIN DI DEM E AT AR DB E T2 L2 T. IBH
<':LT,‘E@/?%U%@F@@%@%%FL,Eé&%ﬁ#&@ﬁ%%%%%ﬁ 2T B X5, BoEHIC
Lo TRIE/( o NIFEROMMEZ 77 v 275, FERLFROOLEDIE, AETAT vy a7y
FOVZERNC BT B IERIERICE T 2 {TEEIOERY Y 4 uBHHTH 5.

1 EA
XU DICHIRINZ (gyrocommutative) gyrogroup, gyrovector space DEFE % B 5. FEAH K
ARFIEIZ U] 22 L T2 E 0.

k. BTRVELSGLEER D : G x G — GO (G,®) Z magma £\ 9. a,be GIZHLT

®(a,b) Z a®blTk>TET. ¢: G — G2 magma (G,0) DACHMTH 2 L1X, G256 G~
DERBT dla®b) = ¢(a) ® ¢(b) (a,b € G) THHI L&V, (G,0) DHCHMEEDOESAZ
Aut(G, @) £ 7.

E#& (Gyrocommutative Gyrogroups). [U] magma (G, ®) 2% gyrocommutative gyrogroup T
b5 LT

(Gl) F30ed st. 0@a=a (Vae€G)

(G2) YVaeGIreG st. z®a=0

(G3) 3Jlgyr[a,bjce G s.t. a® (b c) = (a D b) ® gyr|a, bc
(G4) gyr[a,b] € Aut(G, @)

(G5) gyrla,b] = gyr[a & b, 0]

(G6) a®b=gyr[a,b](bd a)

Zabce GIZXNLTHZT I ETHS.
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E# (Gyrovector Spaces). [U] (G, ®, ®) * real inner product gyrovector space (HiZ gyrovec-
tor space £\39)) TH 5 LIE, (G, d) B’ gyrocommutative gyrogroup T, FENEZEM V D3ETE L
TGV,

(VO) gyr[u,v]a-gyrfu,v]b = a-b
FhHAQ RxG - GERERINT

(V1) 1®a=a

(V2) (rn+mrn)®a=rcadna
(V3) (rr)®a =ro(r®a)
(vay Jlga _ @

lr@all  lall

(V5) gyr[u,v] (r®a) = reogyrju,vla

(V6) gyr[rm®uv,ra@u| =1

(VV) S HIZES |G| = {£|lall; a € G} c R Eic (Hlo) j#HE @, @ 23
EFINT (|G, ®,®) 1F1RITLDORY MV Z %L,

(V7) [r@al| = |r|@|lal|

(V8) [laa bl| <|la]| & ||b]]

Zw,v,a,be G, r,r,r e RIZNL T I ETHA.

% (Einstein Gyrovector Spaces).[U] ¢ Z EZEHOEDOM S X GwAVICEFA S N2 H K OM
k% R = {a € R? ||a|| < ¢} £ 5. Einstein DEEM & A A 7 —fF1F

1 v
b= b b
ad, 1+C_2{a+ + = 1+%(a><(a>< ))}
r@.a = c tanh (rtanh_l—HCCLH)—;H (if a #0), re0=0
1
forall a,b e R® r e RICK O TERINS. 2T 74 = —
a
1-— 2

N (VV) D, 6 ||R?|| = (—c,¢) 1281 2 op, 0 1

r®_a = ctanh <r tanh ™! ﬁ)
E c

for all a,b € (—c,c), r e RICK > TEEINS. DL ZF, (R ®g,®g) ¥ gyrovector space & 72
%. Ungar (ZEEDOFENEZEM VITH LT, HEDEHS ’EV\]E’C?ET T & D, FHERV, ~ L5
DEBVERINE T EZRL TS,
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f (Mobius Gyrovector Spaces).[U] V 2L D FENEZEM, [E I N7 IEDB s ISR L T
V,={a cV;|la|| < s} £T%. Mobius DHIE X O Mébius D A A 7 —FF1%

(1+2a-b+ LBl a+ (1 - Fllal’) b

ad b=
! 5 Zab+ LlalTol
) el e _
r® a=s tanh <rtanh - ) Tall (if a #0), r®,0=0

foralla,b € V,, r e RICXS>TEEZNS. Mobius D AD 7 —fF L EE||V,|| LOBE L Einstein
gyrovector space E[fl—TH 5. (c¥sicEbB.) ZDEZ, (V,, By, @u) & gyrovector space &
%5, QR EEZENFNHIC e, @ EEL.

W70 2R OWEEDF 0B HN 2% 513, (1) BED AN 7 —fF (2) HH @ (3) #HE o T
BAEHEZ 525, Thbb,

r1@uWia; O ro@waae = {T1®(w1al)} S¥) {r2®(w2a2)}.
ZLTZD LI REHEDOFINIAIET 5.

—RRICIE, SEEILFRTE, FENTH, PENTHERVWC EITEET %!

adPb+bda
ad®(bdc)#(adb)de
ro(a®b) #rea®reb

t(a ® b) # ta @ tb.

LU, 2 (BXUH) ¥ v A affGiE(G3), ¥ v A4 v kAl (G6), AA 7 —4rEliEil (V2),
A AT —REEIERT (V3) 72 ED3d 5 K 912, gyrovector space 13T R E E 20/t 26 L T
W5,

s =00 &THEVNIEZEEVICIERL TTE, A @, @ ZEFE DX RV, 24 F7—f5FIC
WD Zaud, ENEAEMICE T 2522 Mobius gyrovector spaces 1Z8 1) % #fG R0 61870
INIHIBEN) ZEZRBL TS,

e

5. [U]

a®b—a+b (s— o)

rea —ra (s— 00).
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2 BRERYvAXRT NUVEBBRZEEEERY v O

D70 s =1 DBARBR D03, ZNDHERED s > 01T L THIRT 255K 28 D135
L V>, Mobius gyrovector space TIZRAIL D 2D :

{7“1@0,1 Dro®as; 11,12 € R} = {)\10,1 + )\2012; )\1,)\2 - R} ﬂVl
for a1,a, € V;.

(C)HE O, @ DEERDPS r @a; ®ry®ay 1T ay, a; DFIEFREHTH D, Vi DY gyrovector space T
HBHEVHIZEIZD,QIODVTHL TWAEIENEEFNTVREIDTrH®a Hra®as € V.
(D) RDEMIZ X 5.

EIE 1.[AW] Let (Vy,®,®) be the Mdbius gyrovector space and 0 # ay,a; € Vy. Put a =
a; as . o
. . Suppose that 0 # t1,t, € R satisfy the condition
llaa|] [lazll
‘tl a + 19 a2 ‘<1
llaafl 7 laz||

(I) If 2ty + t1 # 0, then we put

L P4 2atity + 2+ 1 — /(02 4 2atits + 6 + 1)2 — Badity — 4ty

“a= 2(2aty + 1)
62+ 2atty + 12 — 14+ /(0% + 2at1ty + 1% + 1)2 — Sat ty — 4t,2
co = :
? 2t,
(IT) If 2aty + ¢t = 0, then we put
t1
C1 =
T2
Cy = tl.
Then, we have 0 < |¢1], |c2| < 1 and
a as
hi— e =®a; @ r®as,
llaaf| — lazl|
where
tanh™! ¢ tanh™! ¢y
"M =——=—=_ 5 and o= —""=7 17 1"
tanh™" ||a4]| tanh™" ||as]|

CHUIRDER 20685, FE 2DHT 2,y DAUZE S DIFHEL < Z2\02ds, Mz 1
WG 5 ENEETH), 2Nk ) Difinz HT 5.
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EIE 2.[AW] Consider the following system of equations for real numbers:
22 y® + (ya? + 20 — )y +1=0 (1)
2y’ + (20 + B)z* = By +x =0 (2)
Suppose that —1 < a <1, 3# 0 and 1+ 3(2a + ) < 2

(I) If 2ac + B # 0, then

L 1+ BRa+B)+9° = VL + B +5) +79°) = 420 + §)B7’
a 2(2a + B)y

y— LH Qo+ B =7+ /(L + fRat B) +77)° — 4@ + H)FY
2y

is a unique pair as the solution to the system of equations (1), (2), which satisfies 0 < |z, |y| < 1.
Moreover,

14+ 8Ra+ B+ + /(1 + B2a+ B) +2) — 4(2a + B) B
e 220 + B)y

)= 1+ BQ2a+8) —7* — V(1 + B(2a + B) ++%) — 4(2a + B) B~
2y

is a unique pair as the solution to the system of equations (1), (2), which satisfies |z|, |y| > 1.
(I) If 2ac + B = 0, then

By

T =
1+ 2
1

y =
v
is a unique pair as the solution to the system of equations (1), (2), which satisfies 0 < |z, |y| < 1.

E&. V| DZETRWITES M 23 gyrovector subspace TH 5 &1, M D35EE ©, @ 122\ TE]
CLTwaZetz0n), Thbt,

abelM, reR = adbe M, rRac M.

ArEL X9 %, V, DT XTD gyrovector subspace DIHE LT % A2 K> THEK I 117 gyrovector
subspace &\, \VYAEERT Thbb,

ng = ﬂ {M; A C M, M is a gyrovector subspace of V;}.
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WJZ’.Cin = 4, (il,ig,ig,’i4) (1,4,2,3) &j—% ﬁfcl@Czl@Cg@Cg ,,7 ‘/JV/f U*D@'[EE{'%
RET 20 2ESMA2%51F, LMTDX ) IZ5 >DO0REEDH 5 ¢

c, D {04 NP (Cz D Cg)}
(c1 @ ey) @ (e ® cey)
c1®{(cs® ) ®es}
{ci®(cs® )} Des
{(e1 D ecy) e} ®es
EIE 3.[AW] Let (Vi,4,®) be the Mobius gyrovector space, 0 # aq,---,a, € Vi and let

(41,--+ ,1,) be a permutation of (1,---,n). For an arbitrary given order of gyroaddition for
ri,®a;, &---dr;, a; , we have the following:

\/g{a1, L an}

={ry®a; ® - ©ry,®a;,; 1y, - 1, €R}

= tlL‘i‘""*’tn&;tl,“' t, € RPNV,
[laa]| [|an]

JEE. Einstein gyrovector space DR 72 gyrovector subspace IZDWTHFIFRTH 5.

9’”’ ERZY 4 BRSO TR 5. BH OB & LI OB I RD 5 2 LHvT
CHEDIRLICE 2D, s =1 DBED L —HKD s > 0 TOREZEL b G L.

I 4.][AW] Let V be a real Hilbert space and let (Vy, &, ®) be the Mobius gyrovector space, and
let M be a gyrovector subspace of V; that is topologically relatively closed. Suppose that

x=x +x, x €clinM, x, € M+

is the (ordinary) orthogonal decomposition of an arbitrary element & € V; with respect to clinM,
which is the closed linear subspace generated by M. Then, a unique pair (y, z) exists that satisfies

r=yPz, yecM zeM NV,
Moreover, if @1, 5 # 0, then these elements y, z are determined by
Y =Mx1, z= s,

where

P 4 o] ” + 1 — /([ ]2 + (2] + 1)% — 4|22
2|, [

P 4 o] = 1+ /([ ]2 + (2] + 1)% — 4[24
2|, |[?
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In addition, the inequalities 0 < A\; < 1 and Ay > 1 hold.

EE. LELD M 23 Ungar 12 X > TEHA I L7 Poincaré DFERE A ICBI L TEHZ 61X, 7 VLI
LTHINPHTH 5 2 L2330 DT, EHIEHETSH 5.

JEE. Einstein gyrovector space THXILT AF5RMGE 51 5.

3 Iy ORI

DT offiClx, 8 2FH I L > THR LN RDOMEZIBR S . gyrovector space & Goebel and
Reich IZ & % Hilbert 3k & DBHRIZOWTH il 2.

#. ARES {a, - ,a,} CV, P A 0fBPHITH S LIX, {1,--- n} D0dx 5 EME
(i1, -+ ,ip) EOD%R 5T v A BHIDONFIZH L TH

Ti1®a,~1@---@rin®ain:0 = le"‘:Tn:O

WD DI & EERT S.
a—l—b

Bl R? 2RV C LRI 2L RICBITZHEIZadb= : k?‘ 5.
1 2 2, 1
a=—, b=————i, c= -,
2 5 5 2
E¥sE, ZDLE
4 + 167
b = b =
a®(b®c)=0, (a®b)@c=z—pb
£ 0, M{a,bc} 13Y v A QPPN TIZ R, FE1ICK>T
tanh ! =33+V689 taph~! 17=v689
r = —& and 7y = —2
tanh 3 tanh 3
EBC L,
— \/ 17 — +/
L ®C® ra®a = 33 + V689 ® 7 6892’2()
20 20
DD 5.

EE 5. [W2] {ai, - ,a,} CV, 28I LT 2. 200 v A ufiltfitne®a @ @&, ®
A, M Ra DS\, Qa, DALY ¥4 BHIDETF%2 b5,

rMRa - Br,R0a, =\®a, Pd--- PN\, Qa,
TharLT2. ZDEEr;=) (j=1,---,n) DY L.
EIE 6.[W2] V, OERETESITHN LT, IPHL L Y v A4 u ML oI —8T 5.
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4 Hadamard ZEfE, %5(C Hilbert ball & D%

BIEERMIZEEE S TOREHD & ZI2, W I A6, B S AAMEDEIFR L CT\> % Hilbert ball % &
DRI E) B> T 2D E V) FEOTHMZ WA E, I 6ICHHRE, B], [GR]ZIZL® L
TALEEDER 2 OIS E L. COB2ED TRESEL £7.

%9, Ungar I X - TEA I 7z gyrovector space DlD Z & ZiBR 2.
E# (Ungar).[U] Mobius gyrovector space (V,, @, ®) L Td & h 23

d(a,b) = |[©a ® b|| = |[bSall

h(a,b) = tanh ™! —d(t b)

for all @a,b € V,ICK > TEEIN, (V,, h) (FEHBEZEEE R 5. 5112V, -]]) 23578 7% & 1F,
(Vi,h) b5EMHTH . 2 Tboaldbd (Ca) KT,

® % @p ICHDEZ 5 Z &1 K > T, Einstein gyrovector space (V, @, ®g) LT dg & hg 23E
FEIN, FRD Z EDD LD,

.

lal? +2a-b+ [|b]*
I+ Za-b+ Hflallo]P

la & b||* =

1

la® b|]> =
E (1+ 2

1 1
» {lall 101 + 200 = S lalPolf + a0}

for any a,b € V.
Goebel & Reich 12 X % Hilbert ball DEZEIZRDED TH 5.

E# (Goebel and Reich).[GR] H %z # 3% Hilbert 221 & L B = {x € H;||z|| < 1} £FHEX.

N[

p(z,y) = tanh ™" (1 — o(z,y))?,
where

(2= ll=l) (L= [lylP*)

A T TS

for any x,y € B.

EI (Goebel and Reich).[GR] (B, p) |3 Hadamard 22 (5&fi CAT(0) 22[#]) TH 5.

a,becV N L T, idmpELtoz

[N

pla,b) = tanh ™! (1-0(a,b))?,
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BLW
(s* = llal]*) (s* — |[B]]*)

7 = T e )y

LT 5.
EE. a,be V, Ik L TROZEADIIEL D 37D

ac b
las,bll (1 - o(a.b)

NI

i

S
lac,bll

(ii) hg(a,b) = tanh™ .

p(a,b)

b
(iii) 2h(a,b) = 2tanh™* @ =p(2®a,2Db).

V 2352 Hilbert 22[H] 72 5 1, Ungar @ Einstein gyrovector space (Vi, hg) & Goebel and Reich @
Hilbert ball (B, p) (ZBEAEZER & LT— T 5. 2 LT, 2700 Y v 4 a e 3Rt 2<r (B, p)
ICE T B INE A S .

E#. gyrovector space (G, ®,®) DZETHRVETES A D3 gyroconvex TH 5 & 1%, XL 7
DIERWVY).

a,bcA 0<r<1 = adre©adb)cA.
Mobius gyrovector space (Z¥1} % Poincaré DEHHE h ICB L TPHTH % gyroconvex subset D i
Rtz R ROEHIZ, #ETBR7 X 912, Ungar I X %Y v A a i@l % > Ci T

Z %73, Hilbert ball 12B3 24554 & Mobius ¥ & U8 Einstein gyrovector space 23AMTH 5 Z &
PoLTD5.

12 (Goebel and Reich).[GR] V % £ Hilbert Z2[f], A % Mobius gyrovector space (V, &, ®) D
FREE R 1B T 2B v A A L T5. COLE EEDILz e VIR, yc ADS

h(z.y) = inf h(z, a)

il T k) I —RICHEET 5.

5 XEDVRIYAARY MLEBICETSERY v OER

ZOHITIX, ¥ A uXRT PRI LT, 202 Y v A nWES EE TR EM %
BHLTHEONRWE ) BERIZOWTERS. DTEITRT, AETAY A a7 ML2ZERH
WCEITLHDTHS.
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fBrE. ANV, h-PHY x4 v R 7 OV 2ELH.
. a,, acV, 22 |la, —all - 0% 5%, h(a,,a) — 0.

R, MDY v A 07 MV 503, Bl BT 2a b E2Y v A4 u s L
5y,

. ARAEY v A4 v X7 b OVERsr 223 pE 2B L TR

8. V 29 Hilbert 22 & T 5. AW (V,, h) THZRSIX, AlZ (V|| -|]) THXPH. L723->T,
MMV, Dh-PY v A a7 FVEGT2ERE 61X B v A 0 0RO FER 4 DSEHETH 5.

T 7.[W2| V %% Hilbert 220, M % V, ® h-BI¥ v 4 02 FABNZ%EM, 2 €V, LT 5.

() z=ydz,ye M, ze M'NV, % M ICHTZEZXS v A ufEL T2 COLE yld M
DILELThICEHT2 2 DEERTHS. Thbb yldROGEA 2T !

h(z,y) = inf h(z, m). (3)
(2) W, yDBMDILELThICHTZ2 2 DEERTHZ LTS, Thbbyc M THEA(3) %
W7-TEd3%. ZDLE,
r=yD(OyDx)
EMIZBEHT2ERXY yfugfEchsr Thbboydoxe Mt NV,
E&. (1) {a, ), Z V,NDIN LT 5. #lEk
(((a1®a2)@a3)@---@an>EB---

DINHKT 5 L1d, 2 e Vi IFEL Th(z,x,) = 0 (n—o00) 27T I 2. 22Tl {z,.},
Br,=a1 B8X0x, =2, 1B a, ITEoTFMNWIZEDSNDEHDET 5.

(i) {an}n % |an| < s % 2IBG & T 5. HoH

Z@an:aleéag@---@an@---

n=1
DINKT B LR, 2| < s BAFEH 2 DBHEL T2, > 2 THEIERZ V). 22Tl {z,}, 1F
1= BELx, =2, 1P a, ITLEO>TRBHWIEDONDEDBDET 3.

ROMER (U, (3.147), (3.148)]| L IEBII D5 2 L TH D, F—FA Y POV EDTH 5.
. {u,v,w} CV,DELRLGIE D BHEGNTH S, T45bb

ud (vow)=(udv)dw.

HIEIC X > TROEHD (1) TIEFEIMHSALEL,

EIE 8.[W2] {e,}22, %% Hilbert Z2[fH] V D IEMIERIN & § 5. {w,}22, 2 0 <w, < s 7% %FEEI
LT 5. ALRDES {r, )22 IR L TUUT X [FIH:

95



(i) &
ruie; B roQuges - - S r,Qwye, O ---

EHbItx eV ICINHT 5.

0 2
(i) %&ﬁz@@ I3 || < s 78 B HEB 2 (IR T 5.
n=1

, 1 )
Bl s=1%,7 5. %ﬁﬁﬂan:%%%xé_
=a1 D ® =1 1 ( —1.92 )
Ty = a1 Ap — n+1 n=1,2, .
tamh_lL2 1 . .
Tn = -1 CL-EB<-C@k?,rn®—:tanh(rntanh_1—>:_5&07

n

32 (ne3) - -1
o) 25 n+1’

j=1 j=1

T jz| <1 TH 2B &9 BIE 2 ITIFPHL e, :@WJ&&Z% =0 ITHHELTWVB EEZ
n=1
5N %.

e’} 1
=] E 52} —
FFﬁIEE. W - 7
n=1

. b
ab> 0551 avb="1" catb THBIEDD,
1+ab
> 1 =1 1 72
Yooy =~ T~ 0411234
2o np ~ LR 46 041123

BDT, ZOXNRD (& D) e LTIHRL T2 2 LN TH .

EIE 9.[W2] {e,}>2, 9 Hilbert 2] V DIEBIEARZRIK & 2. {w,}2, 20 <w, < sk 5EH
NeETs. ZOLE TED eV, IZRDEIICERY v A rEHINS :

T =r1Qwie; Bro@uses d - Br,Qwpe, b --- .

IR BERE 7 BT 3 b DT D, BRI RN D & WE ORI X 67, B4 55 L L
B, FRIRY v 4 TIEBORE (r), R 4 F6 S THETE 3,

EE 10.[W2] {e,}>2, %% Hilbert ZEZ[H V D IERERIN E T 5. {w,}52, 2 0 < w, < s % 2%FEK
e 5. DUNIEH I [FfE:
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(1) {en}pz, 13 (EXLHRELT) BRTHS

(ii) {wnen}or DERT 5 h-FY v A v X7 P VER 2RI V, & —ET 5
n=1

(i) flaf? = Yoo E (g e

n=1

CCT{r, 22, BEB ODTFHEZICL o TIRE 2HEIITH 5.
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The Toeplitzness of weighted composition
operators

HARTIKRS: - T K f&— (Shiichi Ohno)

1 Introduction

Let H? be the Hardy-Hilbert space of all analytic functions on the open unit disk I with square-
summable Taylor coefficients. For f(z) = 7 a,2z" and g(z) = > 7 b,2" in H?, identifying
functions in H? with their boundary functions, the standard inner product is defined as

(f.9) =) anba
n=0

= [ J(e”)g(e?)dm(®),
oD
where m is the normalized Lebesgue measure on the boundary 0D of D. Refer to [6, 10] for the
basic properties of the classical Hardy spaces.

Let T be a bounded linear operators on H2. Then T is a Toeplitz operator if and only if
S*T'S =T, where S is the forward shift defined by Sf(z) = zf(z) for z € D and f € H? and S*
is the backward shift on H2. In the natural way, for a bounded measurable function u € L>(9D),
a Toeplitz operator T, on H? is defined as T, f = P(uf) for f € H?, where P is the orthogonal
projection from L?(0D) to H2. Recall that the only compact Toeplitz operator on H? is the zero
operator. See [4, 8] for operator theory on H2.

In [1], Barrfa and Halmos called an operator 7" on H? asymptotically Toeplitz if the sequence
of operators {S*"T'S"} converges strongly on H2 Then Feintuch [7] suggested the analogous
conditions relative to either weak or norm operator convergence. So there are actually three
different kinds of asymptotic toeplitzness.

Definition. Let T be a bounded linear operator on H?2.

(i) T is said to be uniformly asymptotically Toeplitz if there is a bounded linear operator A on
H? such that ||S*"T'S™ — Al| — 0 as n — co.

(ii) T is said to be strongly asymptotically Toeplitz if there is an operator A on H? such that
1(S*"TS™ — A)f|| — 0 as n — oo for any f € H>.

(iii) T is said to be weakly asymptotically Toeplitz if there is an operator A on H? such that
(S*"TS™— A)f,g) — 0asn — oo for all f,g € H.

o8



Feintuch [7] showed the following result.

Theorem of Feintuch. A bounded linear operator on H? is uniformly asymptotically Toeplitz
if and only if it is the sum of a Toeplitz operator and a compact operator.

The asymptotic toeplitzness of composition operators originally was considered by Shapiro. For
an analytic self-map ¢ of DD, the composition opertaor C,, is defined by C,f = f o . It has been
known for a long time that such operators are bounded linear operators on H?. See [2, 11, 14]
for the study of composition operators. Nazarov and Shapiro [9] investigated properties of the
asymptotic toeplitzness of composition operators and adjoints. Also, refer to [12] and to [13] for
a survey of early results on the toeplitzness of composition operaors. Recently the toeplitzness of
products of composition operators and their adjoints is independently investigated in [3, 5].

The concept of composition operators has been generalized to weighted composition operators.
Let u be a non-zero bounded analytic function on D and ¢ an analytic self-map of D. We difine
the weighted composition operator M,C, by

Mucgof:ufogp

for f € H?. Then M,C, is a bounded linear operator on H?.
In this article we here consider the asymptotic toeplitzness associated with weighted composition
operators.

2 Toeplitzness of weighted composition operators
First we consider the condition for the weighted composition operator to be a Toeplitz operator.

Theorem 2.1 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of D. Then M,C,, is Toeplitz if and only if ¢ is the identity.

Due to Feintuch’s theorem, we can show the following.

Theorem 2.2 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of D. Then M,C, is uniformly asymptotically Toeplitz if and only if M,C, is compact
or ¢ 1s the identity.

The compactness of M,C, on H? is an interesting problem but is difficult. Now it remains
open. The following may be implied.

For a non-constant analytic self-map ¢ of I, denote I'(¢) = {e : |p(e??)| = 1}, where we are
identifying ¢ with its boundary function.

Theorem 2.3 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of D. If M, C,, is compact on H?, then || < 1 a.e. on dD.

Moreover, assume that u is continuous on a neighborhood N of T'(¢) in OD. If u =0 on I'(p),
then M,C,, is compact on H?.
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By the analyticity of u, m(I'(¢)) = 0, For example, u(z) = 1 — z and ¢(2) = (1 + 2)/2 satisfy
this condition.

Next we consider the strongly asymptotically Toeplitzness. If M, C,, is compact, then M,C, is
uniformly asymptotically Toeplitz and so strongly (weakly) asymptotically Toeplitz.

Theorem 2.4 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of D such that M, C,, is not compact. If |¢| < 1 a.e. on OD, then M,C, is strongly (and
so weakly) asymptotically Toeplitz with asymptotic symbol zero.

We could obtain the converse of the theorem above under the hypothesis.

Theorem 2.5 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of D with p(z) # z. Suppose that ¢(0) = 0. If M,C, is strongly asymptotically Toeplitz
with asymptotic symbol zero, then |p| < 1 a.e. on OD.

Finally we obtain the criterion for M,C, to be weakly asymptotically Toeplitz.

Theorem 2.6 Let u be a non-zero bounded analytic function on D and ¢ a non-constant analytic
self-map of . If M,C, is weakly asymptotically Toeplitz with asymptotic symbol zero, then ¢ is
not a nontrivial rotation. Furtheremore, if ¢ is not a rotation with ¢(0) = 0, M,C, is weakly
asymptotically Toeplitz with asymptotic symbol zero.

The proof is done by the same way as in [9]. In this case the behavior of the weight u does not
cause the weakly asymptotically Toeplitzness.

3 Adjoint asymptotic toeplitzness

In this section we consider the adjoint of M,C,. But it is easily checked that the Toeplitzness,
uniformly asymptotic Toeplitzness and weakly asymptotic Toeplitzness of (M,C,)* are ones of
M,C,.

We could show the following by the same method as in [9)].

Theorem 3.1 Let u be a non-zero bounded analytic function on D and ¢ a non-constant ana-
lytic self-map of D. Suppose that ¢(0) = 0 and ¢ is not a rotation. Then (M,C,)* is strongly
asymptotically Toeplitz.
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