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Integral operators acting from Bergman spaces
to BMOA-type spaces

College of Engineering, Ibaraki University Takuya Hosokawa

1 Introduction

Throughout let D be the open unit disk in the complex plane and H (D) the space of all analytic
functions on D. In the theory of analytic function spaces, Hardy, Bergman and Bloch spaces have
been actively investigated as classical examples. And then Zhao introduced the general family of
the spaces F'(p, g, s) unifying most of the analytic function spaces mentioned above in his thesis
[5].

For a € D, let ¢, be the automorphism of I, defined by

a—=z
#alz) = 1—-az

and let the Green’s function g of D be
1

9(za) = log Iy

The pseudo-hyperbolic distance p(z,w) between z and w in D is denoted by

p(z,w) = [p.(w)] =

Z—w
1—zw|’

Let 0 < p<oo,—2< qg<ooand 0 < s < oo. The space F(p,q,s) is consisting of all f € H(D)
satisfying

sup [ 1P = (2, 0) dAG) < o,

a€D
where dA(z) = dxdy/m denotes the Lebesgue area measure on . The space F,(p,q,s) is also
defined as the set of all f € H(D) satisfying

lim / PP~ 29" (2, a) dA(z) = 0.

la]—1

In [5] and [6], Zhao showed that if s > 1, & > 0, and g = pa — 2, then the spaces F'(p, pa — 2, s)
and F,(p,pa — 2,s) can be regarded as the Bloch-type space and the little Bloch-type space,
respectively.



Let s =1, a > 0, and ¢ = pav — 2. The space F(p,pa — 2,1) is called the BMOA-type space
(see [5] and [7]). Explicitly, we denote the spaces considered in this manuscript as follows: For
f € H(D) and a € D, we put

My (f,a) = /(1 — pla,2)")(L = 22| f (2)" dA(2). (1)

D

Let BMOAJ be the set of all f € H(D) for which

sup M(f,a) < oo.

a€D
Then BMOA7] is a Banach space under the norm
1/p
Ifllsioss =15+ {sup 570}
ac

Let VMOAZ denote the closed subspace of BMOAJ consisting of functions f with

lim M7 (f,a) = 0. (2)

la]—1

By [5, Theorems 1.3 and 1.4] or [6, Theorems 1 and 2], BMOAJ (respectively, VMOAY) is contained
in the Bloch-type space (respectively, the little Bloch-type space). It is known that BMOA,
(respectively, VMOA)) is the classical space BMOA (respectively, VMOA) of analytic functions
of bounded (respectively, vanishing) mean oscillation.

For the case s = 0, the space F(p,q,0) is consisting of all f € H(D) satisfying

/D PP = 22) dA(2) < 0.

The space F(p,q,0) would be regarded as a weighted Bergman space. For 0 < p < oo and
—1 < a < oo, let AP denote the weighted Bergman space of all functions f € H(D) for which

11 = (1+a) / FEP = 2P)* dA(:) < oo.
We remark that f € AP if and only if
/ PP = |2 dA(z) < oo.
D

(see [8, Theorem 4.28]) The Hardy spaces HP can be viewed as limiting spaces of weighted Bergman
spaces AP as o decreases to —1. Let H* be the Banach algebra of bounded analytic functions f
on D with the norm || f||« = sup{|f(#)] : z € D}.

For a fixed function ¢ € H(D), we define two types of integral operators on H(D) :

S, 1(2) = /0 TP(OF Q) de

2



and
T, f(z) = / H(OF(C) d.

The latter one has attracted interest as a generalized Cesaro or Volterra operator. Moreover, by
the equality

p(2)f(2) = @(0)f(0) + S, f(2) + T, f(2)
these operators are related to the multiplication operators.
Now we let 1 < p < o00,—1 <a <ooand 0 < 8 < oo. We will consider integral operators S,

and T, acting from the weighted Bergman space A? to the BMOA-type space BM OA/; and the
VMOA-type space VM OAqu .

2 Into the space BMOA?

At first we consider the boundedness of S, from A%, to BMOAY.

Theorem 2.1 Let 1 <p<oo,—1<a< oo and < f < 0.

(i) S, : AP — BMOAg is bounded if and only if

_1_2ta
sup(1 — |2[*)" 71775 Jp(2)] < oo.
zeD

Moreover, this equivalence also holds for any Hardy space HP with 1 < p < oo.
(i) T, : AP — BMOAg is bounded if and only if

_24a
Sug(l—IZIQ)B o l¢'(2)] < o0
zE

Moreover, this equivalence also holds for any Hardy space H? with 1 < p < 0.
If p=2and 8 =1, then we get the results for BMOA.
Corollary 2.2 For a > —1, the following hold.
(i) S, : A2 — BMOA is bounded if and only if ¢ = 0.

(ii) T, : A2 — BMOA is bounded if and only if
sup(1 — |2|*)"2|¢'(2)| < o0 for —1 < a < 0 and ¢ is constant for 0 < a.
zeD

Moreover, we have the results for the Hardy space H2, too.
Corollary 2.3 (i) S, : H* = BMOA is bounded if and only if ¢ = 0.
(ii) T, : H* — BMOA is bounded if and only if

1
sup(1 —[2[*) |¢'(2)] < 0.
z€eD



Next, we consider the compacctness of S, from A? to BM OAg .
Theorem 2.4 Let 1 <p<oo,—1<a<oo and 0 < f < 0.
(i) Suppose that S, : A? — BMOAg is bounded. Then S, : AY — BMOAIE is compact if and
only if
_ 24«

lim (1 —|2%)"7 775 [io(2)] = 0. (3)

|z|—1

Moreover, this equivalence also holds for any Hardy space HP with 1 < p < oo.

(ii) Suppose that T, : AX — BMOAI’? is bounded. Then T, : AP — BMOAg s compact if and

only if
lim (1 — |22~ |/ (2)] = 0.

|z]—1

Moreover, this equivalence also holds for any Hardy space HP with 1 < p < oo.

3 Into the space VMOAg

In this section we will consider the boundedness and compactness of S, and T, acting to
VMOAg. In the sequel we could obtain the following equivalence.

Theorem 3.1 Let 1 <p<oo,—1<a<ooand 0 < f < oo. The following are equivalent.

(1) S,: AL — VMOAg is bounded.

(ii) lim (1 — |22)°" 5% |o(2)] = 0.
|z]—1
(iii) S, AL — VMOAg is compact.
Theorem 3.2 Let 1 <p<oo,—1<a<ooand 0 < f < oo. The following are equivalent.

(i) T, : A® — VMOAY is bounded.

(ii) lim (1 —[2*)"~5" |¢'(2)] = 0.

|z]—1

(i) T, : AP — VMOAg is compact.

4 A special case

1
Take \(z) = log .

T is bounded from H* to BMOA. We here consider the boundedness of operator T, acting from
H> to BMOA?.

. Then Ty is a Cesaro operator. In [2], it is shown that the Cesaro operator

Theorem 4.1 For1 <p <ooand0 < f <oo, T,: H® — BMOA]B, 15 bounded if and only if
¢ € BMOA!.
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Fefferman’s multiplier theorem and its recent
developments - applications of the Besicovitch
set to analytic problems

Graduate Student, Niigata University Yoshiaki Suzuki

1 Introduction

This is a brief note on the Fourier multiplier problems and its recent developments. There are no
results mine.
For f € L'(R"), we define the Fourier transform of f

fla)= | Jegyesmiesde.

Let us denote a unique extension of the Fourier transform on L*(R") by .#. Then .%# : L*(R") —
L?*(R™) is an isometry and the Fourier inversion

F (@) = F(f)(-2)

holds on L2.
Let By(a,r) = {x € R" : ||z —a|| < r} (e € R", r > 0). We consider the operator Sg, (a,),
defined for f € L*(R™) by
SBn(a,T) (f) = y71XBn(a,r)y<f)7

where xp, (ar) is the characteristic function of B,(a,r). We call this operator Sg, () Fourier
multiplier for the ball B,(a,r). In particular, if f € L'(R") N L*(R") then

-~

St o) (1) () = / Nbatan (€ F(E)TEde.

n

The Fourier multiplier problem is then whether the Fourier multiplier Sg, (1) can be extended
to a bounded linear operator from LP(R™) to itself.

2 Fefferman’s multiplier theorem and the Besicovitch set

M. Riesz showed that Sp, 0,1y can be extended to a bounded linear operator on LP(R) for all
1 < p < oo. But C. Fefferman proved the following theorem in [2].

Theorem 2.1 (Fefferman, 1971). Supposen > 2 and 1 < p < oo. The Fourier multiplier operator
Sg,(0.1), initially defined on L*(R™) N LP(R™), can be extended to a bounded linear operator from
LP(R™) to itself only for the case p = 2.



It was surprising that Fefferman proved this theorem by using a construction of the Besicovitch
set which could be used to give a solution to the Kakeya problem. The question was to find a set
in R? of the least area in which a segment of unit length could be moved so that it pointed in all
possible directions.

Besicovitch showed a existence of a set yield a solution to the Kakeya problem.

Theorem 2.2. There exists a set in R? of Lebesque measure zero which contains a unit segment
in every direction. We call such set the Besicovitch set

Idea of a construction of the Besicovitch set. Starting from the fixed triangle ABC', we subdivide
the base AB into 2V equal subintervals, with division points

A=Ay Ay, ..., Ay = B

Now we translate smaller triangles As;As;2C (j = 0,...,2Y — 1) leftwards. Then we can incor-
porate each “blue areas” in Figure 1 into one triangle, which is similar to the original triangle
ABC'. This figure call ¥1(ABC). So we carry out the above process on the small triangle with
N replaced by N — 1. We continue in this way, finally obtaining Wyx(ABC). We can show that
the area of Uy (ABC) is sufficiently small as large N and construct the Besicovitch set by using

A /N4

a} 'LJMB "I’] (ABC)
Ao AQ"

Figure 1

QOutline of the proof of Fefferman’s theorem. Note that it is enough to disprove LP-boundedness
of Sp,(0,1) on LP(R?) for p < 2. We assume that Sp, (1) : LP(R*) — LP(R?) is bounded.

The boundary of By(0,1) has tangent lines in every directions. Then we can approximate
any half-plane by suitable dilates and translates of B(0,1). Using this approximation, we can get
square function estimates for half-plane multiplier: For any collection of unit vectors vy, ..., v, € R?
and any collection of functions fi, ..., fx € L*(R?) N LP(R?), there exists C' > 0 such that

1
k 2
(s |2 <o|(3u0r)
p - p
Here, Sy, = fﬁlejﬁ and H; = {zx € R*: z-v; > 0}.
We can exihibit a counterexample to square function estimates based on the construction of

the Besicovitch set. For any ¢ > 0, there exists N € N, and 2" rectangles Ry, ..., Ry, each having
side length 1 and 277, such that



(1) UL By <=

=1

(2) The éj are pairwise disjoint, and ‘U?Zl Ej

Here Ej is the rectangle obtained by translating R; two units along the longer side of R;. We can
use the Besicovitch set to construct {R;} . (See Figure 2).

Figure 2

We set f; = xr;, and let v; be the unit vector which is parallel to the longer sides of R;. By
square function estimates, we have

1

2

oN 2 oN
DoIsa || <ol D el
=1 j=1

p p

1
2

2N 1—
<C / xR, [* | do </ da:)
; UR;

[S4S]

_Pp
= (el 2.

On the other hands, we can see C/ngj < |Sw,;| (3C" > 0). Hence the result of this is then

2

C' < Celz,

N

which is not possible if ¢ is sufficiently small. [



3 Recent developments

Interest has arisen in studying analogues of the Fourier multiplier problem in the bilinear setting.
Let D C R?? be a domain. One may ask whether the bilinear Fourier multiplier

To(f.0)e) = [ [ xol&nFOamen gy

defined for Schwartz functions f, g on R™ extends to a bounded bilinear operator from LP(R) x
L4(R) for suitable ranges of p, ¢ and r. Here yp denotes the characteristic function of D. For
dimension d = 1, the case of D = By(0,1) C R? was treated by Grafakos and Li in [4]. They
showed the following theorem.

Theorem 3.1 (Grafakos and Li, 2006). Suppose 2 < p,q < o0, 1 < r = pp%] < 2. Then Tgyo,1)
can be extended to a bounded bilinear operator from LP(R) x LY(R) to L"(R).

For d > 2 and Byg(0,1) C R, the following theorem proved by Diestel and Grafakos in [1].

Theorem 3.2 (Diestel and Grafakos, 2007). Let m > 2 and 1/p+ 1/q = 1/r with ezactly one of
p, q, v(r — 1) strictly less than 2. Then Tpg,, 01y is not extendable to a bounded bilinear operator
from LP(R™) x LY(R™) to L"(R™).

In [5], Grafakos and Reguera generalized this result to replace the ball Byg(0,1) with a domain
D which have a certain property.

Theorem 3.3 (Grafakos and Reguera, 2010). Let m > 2 and 1/p+1/q = 1/r with at least one of
p, q, r(r —1) strictly less than 2. If D is a compact, strictly convex domain which 0D is a smooth

hypersurface, then Tp is not extendable to a bounded bilinear operator from LP(R™) x LI(R™) to
L™ (R™).

Moreover, Gautam obtained the following generalization of Theorem 3.3 for d = 2 in [3].

Theorem 3.4 (Gautam, 2012). Suppose 1/p+1/q = 1/r with exactly one of p, q, r(r—1) strictly
less than 2. Let D € R* which 0D is smooth in some neighborhood U C R*, and suppose that

either D or R*\ D is strictly convez in U. Then Tp is not extendable to a bounded bilinear operator
from LP(R?) x LY(R?) to L"(R?).

References

[1] G. Diestel and L. Grafakos, Unboundedness of the ball bilinear multiplier operator, Nagoya
Math. J. 185 (2007), 151-159.

2] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330-336.

3] S. Z. Gautam, On curvature and the bilinear multiplier problem, Rev. Mat. Iberoam. 28
(2012), no. 2, 351-369.

[4] L. Grafakos and X. Li, The disc as a bilinear multiplier, Amer. J. Math. 128 (2006), 91-119.

[5] L. Grafakos and M. C. Reguera Rodriguez, The bilinear problem for strictly convex compact
sets, Forum Math. 22 (2010), 619-626.



(6] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-
grals, Princeton Mathematical Series, 43, Monographs in Harmonic Analysis III. Princeton
Univ. Press, Princeton, NJ, 1993.

10



Point multipliers on Banach modules

Department of Mathematics, Niigata University Yuta Enami

This is an introduction of a paper [2] by Ghodrat and Sady.

Background

Let A be a Banach algebra with identity 14. We denote by o(a) the spectrum of a € A. The
Gleason [3] and Kahane and Zelazko [4] have proven independently the following theorem known
as the Gleason-Kahane-Zelazko theorem:

Theorem. The following conditions are equivalent for each linear functional @ on A:
(a) ¢ is a non-zero and multiplicative.

(b) ¢(14) =1 and (a) # 0 for every invertible element a € A.

(c) p(a) € a(a) for every a € A.

The Gleason-Kahane-Zelazko theorem is a theorem on linear preserver problem. (a)<(b)
shows that the unital linear maps which preserves invertibility in one direction are precisely the
non-zero multiplicative linear functionals. Motivated by the theorem, Kaplansky [5] raised the
following question.

Kaplansky’s Problem. Let A, B be unital semisimple Banach algebras and let T : A — B
be a surjective linear transform which satisfies T(1) = 1 and T preserves invertibility in one

direction, i.e., T(a) is invertible whenever a € A is invertible. Is it true that T necessarily
satisfies T'(a*) = T(a)* ?

Note that for a linear transform 7" : A — B with T'(1) = 1, T preserves invertibility in one di-
rection if and only if 0(7'(a)) C o(a) for each a € A. The problem is still open, however, it follows
from the Gleason-Kahane-Zelazko theorem that the problem is affirmative for unital semisim-
ple commutative Banach algebras, more precisely, such T' can be represented by a composition

operator on the Gelfand transform:

—

T(a)=aor,

where 7 is a continuous mapping from the maximal ideal space of B into the maximal ideal space
of A.

In this proceeding, we present some generalizations of the Gleason-Kahane-Zelazko theorem
given by Ghodrat and Sady [2].

11



Point multipliers

Let A be a Banach algebra. The set of all non-zero multiplicative linear functional on A is denoted
by 0(A). A Banach left A-module is a Banach space X which is also A-module and satisfies

la- 2| < flaf[{]

for every a € A and x € X. If, in addition, A has identity 1 and 1-x = x for each x € X, this
Banach left A-module is called unital.

Definition. Let ¢ € 0(A) U{0}. A bounded linear functional £ on a Banach left A-module X is
called a point multiplier at ¢ if

§la- ) = p(a)é(x)

for every a € A and x € X. The set of all non-zero point multipliers £ at some ¢ € o(A) U {0}
which satisfies ||£|| < 1 is denoted by o4 (X).

Note that a point multiplier at ¢ is a continuous A-homomorphism from X" into C, if A-module
operation on C is defined by
a-z:=¢p(a)z

for every a € A and z € C. Conversely, every Banach A-module operation on C is represented as
above, and thus every continuous A-homomorphism from X into C is a point multiplier.

We denote by A4(X) the set of all closed submodule P of X of codimension 1. It is easy to
see that the kernel of £ € 4(X) belongs to A4 (X). Conversely, each P € A4(X) is the kernel of
some & € 04(X). Note that the map

oa(X) 3 & ker(§) € Au(X)

is NOT injective because, if £ € 04(X) and 0 < |A| < 1, then X € g4(X). '
Ghodrat and Sady obtained a generalization of (a)<(b) of the Gleason-Kahane-Zelazko theo-
rem as follow.

Theorem ([2, Theorem 3.1]). Let A be a unital Banach algebra and let X be a unital Banach left
A-module. Then we have the following.
(i) Let & be a linear functional. In order that £ satisfies

§la- ) = p(a)é(x)

for every a € A and x € X, it is necessary and sufficient that its kernel ker(§) is submodule of X.
(i) Let & is a non-zero bounded linear functional. In order that £ is a point multiplier on X, it is
necessary and sufficient that

la-x)#0

for every invertible element a of A and x € X \ ker(§).

12



Spectra of elements in Banach modules

Let A be a Banach algebra and let X be a Banach left A-module. Ghodrat and Sady introduce a
spectra of elements in Banach module as follow.

Definition ([2, Definition 3.10]). Let F C 04(X). For each x € X', we set

of (v) = {€(x) : € € F.

We also set oy (x) := UZA(X) (x).

Each unital commutative Banach algebra A can be regarded as a Banach A-module. Then
o0(A) C o4(A). If we set F := o(A), the spectrum o7 (z) of x € A as an element of Banach
module coincides with the usual spectrum o(x).

For a compact Hausdorff space X and a Banach space F, we will denote the Banach space of
all continuous functions on X with values in £ by C(X, F). With pointwise operation

(f - F)(z) = f(2)F(z) (f € O(X), F € C(X, E),z € X),

C(X, F) is a Banach C(X)-module. Since C'(X, E) is the injective tensor product of C'(X) and
E, we see that
oox)(C(X,E)) ={Aod, :x € X,A € (E"); \ {0}},

where ¢, is the point evaluation at x € X and (E*); is the unit all of the dual space of E. Thus
the spectrum of F' € C(X, FE) is a subset of

{A(F(x)):z € X, A}

Ghodrat and Sady also characterized maps which preserve spectrum. To state the theorem,
we need some notations. Let A be a Banach algebra, and let X be a Banach left A-module. For

xr € X, define a function z : Ay (X) — U X /P by
PEAA(X)

T(P):=x+ P (P e As(X)).
For a subset S of a vector space, the convex hull is denoted by co(S).

Theorem ([2, Theorem 3.12]). Let A be a unital Banach algebra, let X and Y be unital left
Banach A-modules, and let F and F' be weak x-compact subset of 0 4(X) and o4(Y), respective,
such that (), rker(n) = {0} and Necp ker(§) = {0}. Suppose that T : X — Y is a surjective
bounded linear operator which satisfies

oy (T(x)) = oyl (x)

for every x € X. Then there are subsets Ey C As(X) and Fy C As(Y) which satisfies o4(X) C
co{n € X* : ker(n) € Eo} and 04(Y) C co{§ € YV* : ker(§) € Fo}, and a bijection h : Fy — Ey
such that .

T(z)(P) = Jp(x(h(P))) (Vz € X, VP € As(Y))

where Jp : X /h(P) — Y/ P is a bijective linear map for each P € Fy.

13



We present outline of the proof.
Note that T is injective. Indeed, if T'(x) = 0, then

oy (x) = o7 (T(x)) = {0},
and since ﬂ ker(n) = {0}, it follows that z = 0.

neF
Consider the spectral states

Sr(X) = {n € Y* :n(x) € co(oy (v)) (Vo € X)}
Sp(Y) ={E € X* 1 &(y) € co(af, (y)) (Vy € V)}.

Then Sz(X) and Sz ()) are convex set. Applying a similar argument as in [1, Lemma 4.1.16], we
can prove that the extreme points of Sz(X’) and Sz /()) are contained in F and F', respectively.

Since T preserves the spectrum, we see that the adjoint operator T™ preserves the extreme
points of the spectral states:

T*(ext(Sx(Y))) = ext(Sx(X)).

Thus for each £ € S ()), the functional T*(§) = £ o T' is a point multiplier on X’ at some point.
Let

Ey = {ker(n) : n € ext(Sr(X))},
Fy = {ker(§) : £ € ext(Sx (D).

Then Ey and Fy are subsets of A (X) and Aa()), respectively. Define h : Fy — Ej by the
following manner: for each P € Fp, choose & € ext(Sx(X)) so that P = ker(¢£) and put

h(P) :=ker(£oT).

Then we see that h is a well-defined bijection.
As in elementary algebra, for each P € Fj, the map Jp : X /h(P) — Y /P defined by

Jp(x + h(P)):=T(x)+ P
is a well-defined bijective linear map. Thus we have
T(x)(P) = T(x) + P = Jp(z + h(P)) = Jp(Z(h(P)))
for each P € Fy and x € X.
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Surjective isometries on a Lipschitz space of
analytic functions on the open unit disc

BALGA A _EDIERIBE D23 ) 73w W 22fE] &
T D b L5 AR

Department of Mathematics, Niigata University

Osamu Hatori and Takeshi Miura,

M RFHEE S B, =W &

1 EA
JOVLZERY (N, || - ||n) L CTREBI NG S M
ISCH) = Sln=If—glly ~ (Vf,9€ N)

AT EE, SEFEHEHRE VS, D2ERFHOREAMBMAKE U HD) 2 D Lo ERIEE
LIRD IR TEBMILER L T 5. N—T 1 —Z2[H

1/p
ax < 00 (1<p<o0)
<r<

1 21 M
H = [ e HD): ], = sup [— / Fre)|P dt
0 0

KO H> = {f € HD) : || flloo = sup |f(2)| < oo} b ORI E FREE AR 1 1960 AU I
zeD
nTwna,

EH (deLeeuw, Rudin and Wermer [3]). 1. S 2% (H™, || - |lo) LD EMRIEE/E#E G4 T
H 21D DBENIERMI,

S(f)(z) =af(e(z)  (VfeH™ zeD)
725 aeT={2€C:|z|=1} LEMAEHR: D> DMWFELETEHILTH 5.
2. S (HY, | - |l) LOSEEEMIE ST T H 5 72 D BE+ Sk,
S(f)(z) = ad/(2)f(é(2))  (VfeH' z€eD)
B acTEMGHG DDV FETDIILTHS.

15



1959 412 Nagasawa [15] (%, BIEER L0 2SESRMPFIRE G4 ONME 2 L T\ 5. deLeeuw,
Rudin and Wermer [3] ® H® 213 5455 1%, Nagasawa DEHOKHZRIGHE L WD Z A HIKS

Forelli i H? ED, £ L XRS5\, HEGEEHR#HEGSZRELTWS. Z 2 TlXRzey
DBEDFERIZOVWTENRT 5.

EIHE (Forelli, [6]). pZ 1 <p<ooandp#2%&HA=TEHELTS. SH(H?,| |, LOEEEZE
ML EIREEEAR T H 5 72D D BT+ 13,

S(F)(z) = a(d(2))"f(6(2))  (Vf € H”,z € D)
B acTEMAGERG: D - DIBFIETEHILTHS.

N—T 4 — 22l HP L ORNERMVEERTERIEIZOL S ITREINTWEAD, KT H>® L
DRHF L IFR S R WVEBZEMREFEME R OBENFHI N T VWS DNEEZR IS W, N—T
1 —ZEFEEEIR S\, EHIBIE D 723 3 F v 22 ] ORI E R G AR IR 4 222z B
WTHIED BRI hTWnwd (722 2I1K[1,2,5,7, 9,10, 13) 23Nz v) .

Novinger and Oberlin [16] I%, /N—7 « —2Z&ft] H? [ZBH# U 72 H(D) O 4322/

SP={fe HD): f € H"}

WZIRD 2FEEED /) VL% 52, TNFNDNF v NEEIZH T 528 & I3RS 2\ WEEREEE
HEERDEERE L.

1Al = LA OT+ 1 M flls = flle + 1l (F € SP).
U f e HP 2513 f13 D OFA D RI#EGEMICHERTRETH 595 (72 & 213 Duren [4,
Theorem 3.11] ) , || f|le FEHKZ HD. T ZTH Novinger and Oberlin DFERDLH D&
IZOWTHRRD Z &IZT 5.
EH (Novinger and Oberlin [16]). pZ 1 <p<oc andp # 2 &A1= T E KL T 5.

1S (8P, |HII.) LRSI SIS AR T 5 5 72 b DT 1 4l I
S(F)() = ef(0) + /[ @ONF Q) (e zeD)

AT ceTRUVEAGH D - DBFHETLIETHS.
2. S(S?,|||y) EDOEEEEIILFIRTR TH 5 72D D BB+ 55

S(N)(z) =cf(e(z))  (VfeS,zeD)
BARTce TROEAER : D > DIWFHETEHILTHS.
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2 EEHE

Novinger and Oberlin DEM TIE, p= oo ZFR< SPITHT % 2P EEMILEF RIS ORE %2
FRIAL TV, ZNTIES® ={fc HD): f' € H®} FOLFHERMEEREREHRIIED ISR
BaELTWADTHADh. EEIFZINE TITRFEMEOH R & 2 FEMEGR 2T E 7.
TZTS®DI VA fll, = [FO+11fllo KON fllg = 1l + 1 l|co W BAY B 225 FREAES %
L, FOMEEZHOMILE. UTFAEEHTH 5.

EE 1. SH(S™,||-||,) EOLFFEHEEHRTH 2 -ODBEFNEMEE, e, € TERFaeD
WEFELT

S(F)() = 5(0)(2) + cof (0) + /

[0,2]

qf(Af:;)cK (VfeS2eD) or

S()(=) = S(O)(=) + o (0) + /[ ]clf/(ﬁ‘f‘>d< (Vfesh2eD) or

S(F)(2) = S(0)(2) + cof (0) + / o f

Az_a>d§ (VfeS zeD) or
0.5

S()) = SO+ f0) + clff@Z‘a)dc (Vf €&,z D)

[0,2]

MO DZEThHAS.

EIE 2. S (S, || |ly) LORIEHEMELTH B DDBETDERMIE, e THEHELT

S(f)(z) = S0)(2) + cf(Az) (VfeSP zeD) or
S(f)(z) = S(0)(2) + cf(A2) (Vfes zeD)

MDD L THB.
FERADMRE. EH 1, 2 DEEHDO T A 7« TIEABWIZF U THZ DT, Z I TIEEH 2 DIEHD
BB Z R B Z e 235, 3l [14) 2 TB W E 0.

%3 Mazur-Ulam OEH [11] £ b, S — S(0) IZ 2R EMPER#EG L 725, Mazur-Ulam O
SRR I L Viisild 17 12 & o THEASNT WA, ffe H* DXV 7 7 v " EHE fI T
KU, Ogo 2 H° OV B 7ERET S, feS®IED RITEGNICILEIRETH 206, TD—
BHLELZ f TR, ZORSOHEICEDELIZELRVWEDEEDNS, ZDL SIRDED
YASH

I£lls = sup |£(2)] +sup |f(O =sup [f(2)] + sup |F(Ol=  sup  [f(2) +wf ()l

z€D ¢eb z€T

(€00 (z,w,{)ET2 X Dpgoo
FITU: 8 — O(T? x Oy %
Uf)(zw,¢) = f(2) +wf'(¢)  (Vf € 8%, (2,w,{) € T x Op=)

L DED, B=US®) BT, UkS®N»o B NOLFERMEFIHMEHRE AT 5.
V=USU'eBIFE, VIiEB LOSNERFEME SR L5, ext(Bf) & B DR ZE/- B* D
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FAEALER B Dl si2KkDES £ § 5. Banach-Stone O EILDFEIHTH W 5 15 FIEIZ I sl % 1
ETDHEPHSNT VSN, ERPFEHEGRIIIL T ENEHUDOFEEZEHAT S Z &N
TE5., EH T ext(B)) 2BRICHET S Z LITHKTORWD, FIRKFEDNIN—RIEED
TAT4 T 2HNE I TRERT Z Nk,

Vi{A0p : A €T, 2 € T? x O }) = {6, : A E T, 2 € T? X Oy } (1)
772U V.: B* - B* &
Vi(n)(a) = Ren(V(a)) —iRen(V(ia))  (Vne B* a€ B)

LD EDSND RPN EMEHFEMEGHETHY, 0,: B— Cldd(a) =a(r)(a € B)IZTXDEZ
5RMENEETHS. ()LD VIHEGSFEHARE ZOERLBRIZL DR RIND I DD
5. S=UWU LY SORBBEEEDN, TIIRBLHMU ZHNEZLIZEVBEAINLLH
w,(RENEEND. INSIES DIRIZIFARHE L2 RIZIRWIETTHE0 5, 6 DER

ERETLOIDENDH L. EBEEZNVWRETH D, TOMELGEHORRESS.
EH 2 DERERD 72O, BIRER EORNIEMILFEHRME AR OMECE 8, 12) Z HWTW5
O
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Algebraic structures for means

College of Engineering, Ibaraki University Toshikazu Abe

1 Abstract

Some means on the positive matrices can be represented by algebraic midpoint.

2 Strictly positive matrices

Let M, (C) be the space of n x n matrices with complex entries. We say that A € M,,(C) is
positive if
(¢, Az) > 0 for all x € C",

and strictly positive if, in addition,
(x,Az) >0 for all  # 0.

We denote by P, the set of n x n strictly positive matrices. P, is not a linear subspace of M, (C),
but a convex cone. For A, B € P,, we use the notation A > B to mean that the matrix A — B is
positive. In particular, P; = R is the set of all positive real numbers.

3 Binary operations

A magma (5, 0) is a set S with a binary operation o : S x .S — S, (a,b) — aob for any a,b € S.
An automorphism ¢ of a magma (S,0) is a bijection ¢ : S — S which preserves the magma
operation, that is ¢(a o b) = ¢(a) o ¢(b) for any a,b € S. If there exists an element e € (5, o) such
that eoa = aoe = a for any a € S, then e is called the identity of (S,0). Let (S5,0) has the
identity. For a € (S, 0), if there exists an element o’ € S such that a oa’ = a’ oa = ¢, then d’ is

called an inverse of a.
Definition 1. Let (S, @) be a magma.
e We say that (S, 0) is associative if (aob)oc=ao (boc) for any a,b,c € S.

e We say that (S, 0) is left-cancellative if a o b = a o ¢ implies b = ¢ for any a,b,c € S.
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e We say that (S, 0) is right-cancellative if bo a = ¢ o a implies b = ¢ for any a,b,c € S.
e We say that (S,0) is commutative if a 0 b = boa for any a,b € S.

e We say that (S, 0) is uniquely 2-divisible if, for any a € S there exists a unique element
b € S such that a = bob. The element b is called the half of a.

In this paper, we often use the symbol @ for a binary operation. For uniquely 2-divisible magma
(S,®), we denote by 1 @ a the half of a € S.

3.1 Semi-group midpoints

An associative magma is called a semi-group. In this paper, for consistency, we use the term

“semi-group midpoint”.

Definition 2. Let (S, ®) be a uniquely 2-divisible commutative semi-group and a,b € S. We call
 ® (a @ b) the semi-group midpoint of a and b.

3.2 Gyromidpoints

Definition 3. A magma (G, ®) is called a gyrogroup if it satisfies the following (G1) to (G5).
(G1) (G,®) has the identity e.

(G2) For any a € (G, @), a has the inverse Sa.

(G3) For any a,b, c € G, there exists a unique element gyr|a, bjc such that
a®(b®c)=(a®b)® gyra,blc.

(G4) For any a,b € G, the map gyr[a,b] : G — G defined by ¢ — gyr[a,b]c for any c is an
automorphism of the magma (G, ®).

(G5) For any a,b € G, gyr[a & b, b] = gyr][a, b].
A gyrogroup (G, ®) is gyrocommutative if the following (G6) is satisfied.
(G6) For any a,b € G, a ® b = gyr|a, b|(b ® a).

An algebraic midpoint for a gyrogroup is defined as follows.

Definition 4. Let (X, ®) be a uniquely 2-divisible gyrocommutative gyrogroup, and a,b € G.
The element 1
5 ® (a ® gyr[a, ©b)b)
is called gyromidpoint of a and b.
Let (X,®) be a commutative group. Then (X,®) is both a commutative semi-group and
gyrocommutaive gyrogroup. In this case, if (X, @) is uniquely 2-divisible, then algebraic midpoint

as group and as gyrogroup correspond.
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4 Algebraic structures like a linear space

4.1 Gyro linear spaces

It is known that several gyrocommutative gyrogroup have the structure like a linear space in
the sense of following definition.

Definition 5. Let (X, @) be a gyrocommutative gyrogroup. Let ® be amap ® : Rx X — X. We
say that (X, ®,®) is a gyrolinear space if the following conditions (GL1) to (GL5) are fulfilled.

(GL1) 1®a = a for any a € G.
(GL2) A+ p)®@a=(A®a)® (p®a) forany \,p € R and a € X.
(GL3) (Ap)®@a=A® (p®a) for any \,u € R and a € X.
(GL4) gyr[u,v](A ® a) = A ® gyr[u,v]a for any A € R and u,v,a € X.
(GL5) gyr]A @ u, u @ u] =idx for any \, p e R & u € X.

The map ® : R x X — X is called scalar multiplication.

If (X,®,®) is a gyrolinear space, it is easy to check that (X, ®) is uniquely 2-divisible. In this
case, for a € X, the notation % ® a has two meaning. One is the half element of a, and the other

is scalar multiplication. However, these two are the same element.

4.2 A structure like a linear space for semi-group

We consider a structure like a linear space for semi-group. In this paper, we use the term

“semi-linear space”.

Definition 6. Let (X, ®) be a commutative semi group. Let ® be a map ® : Ry x X — X. We
say that (X, ®, ®) is a semi-linear space if the following conditions (SL1) to (SL4) are fulfilled.

(SL1) 1®a = a for any a € X.

(SL2) A+ p)®@a=(A®a)® (p®a) for any \,p € Ry and a € X.
(SL3) A\®@ (a®b) =A®@adAR0b for any A € R} and a,b € X.
(SL4) (M) ®a=A® (p®a) for any A\, u € R and a € X.

We call the map ® scalar multiplication.

If (X,®,®) is a semi-linear space, it is easy to check that (X, @) is uniquely 2-divisible. In this
case, for a € X, the notation % ® a has two meaning. One is the half element of a, and the other

is scalar multiplication. However, these two are the same element.
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5 Means on P,

The map M : P, x P, — P, is called a mean, if the following conditions (M1) to (M5) are
fulfilled.

(M1) If a < b, then a < M(a,b) <b.

(M2) M(a,b) = M(b,a).

(M3) M(a,b) is monotone increasing in a, b.

(M4) M(z*ax,z*bx) = x*M(a,b)zx for all a,b € P, and nonsingular x € M,,(C).

(M5) M (a,b) is continuous in a, b.

5.1 Examples

Example 7. Define the binary operation &4 on P, by &4 = +, that is,
a®sb=a+0b forallabelP,,

then (P,, ®4) is a uniquely 2-divisible commutative semi-group. Denote by A(a,b) the semi-group
midpoint of @ and b, that is,

A+ B
2

1
Ala,b) = 5 ®a(a®ad) =
then A(a,b) is the arithmetic mean of a and b. Moreover, define the map ®4 : Ry x P,, = P, by
A®aga=MXa forallaeP, and A € R,

then (P, @4, ®4) is a semi-linear space. Clearly, it is a cone of M, (C).

Example 8. Define the binary operation &y on P, by
a®pgb=(a'+b 1! foralla,beP,,

then (P, @) is a uniquely 2-divisible commutative semi-group. Denote by H(a,b) the semi-group

midpoint of @ and b, that is,
1
H(a,b) = 5 Ry (a®pb) =2(at+bH,
then H(a,b) is the harmonic mean of @ and b. Moreover, define the map ®y : Ry x P, — P, by
1
ARy a= Xa foralla € P, and A € R,
then (P, ®g, ®p) is a semi-linear space.
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Example 9. Define the binary operation ®&g on P, by
a®qb= azbaz for all a,belP,,

then (P,, ®¢) is a uniquely 2-divisible gyrocommutative gyrogroup. Denote by G(a,b) the gyro-
midpoint of a and b, that is,

1

1 1 1
G(a,b) = 3 ®c (aBg b) = az(a2b 'az)”

NI

az,

then G(a,b) is the geometric mean of a and b. Moreover, define the map ®¢ : R x P,, — P, by
AN®@ca=a" forallaeP, and ) € R,

then (P, ®q, ®¢) is a gyrolinear space.

Example 10. Define the binary operation &, on Py = R, by
a @y b=max{a,b} forall a,beR,,

then (P,, @) is a uniquely 2-divisible commutative semi-group. Denote by Max(a, b) the semi-
group midpoint of a and b, that is,

1
Max(a,b) = 5 @ (@ @y b) = max{a, b},
then Max(-,-) is a mean on R, . Moreover, define the map ®p : Ry x R, — R, by

A®ga=a foralla€eP, and A € Ry,

then (P, ®y, ®py) is a semi-linear space. In particular, (P,,®,s) is not left-cancellative or right-
cancellative.

6 A theorem

Theorem 11. Let (P, ®) be a uniquely 2-divisible commutative semi-group. Suppose that M (a,b) =
1 ®(a®b) is a mean on P,. Then the following (i) and (ii) are equivalent to each other.

(i) (P, ®) is (left and right) cancellative.
(1i) b # ¢ implies M(a,b) # M(a,c).

Corollary 12. Let (P,,®) be a uniquely 2-divisible commutative group. If M(a,b) = % ® (a®b)
is a mean on P, then b # ¢ implies M (a,b) # M(a,c).
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Cauchy-Bunyakovsky-Schwarz type inequalities
related to Mobius operations

Keiichi Watanabe (Niigata University)

1 HA

(FEF721FEHR) AFEZER (V, () BT 5 Cauchy-Bunyakovsky-Schwarz DA ([C], [B],
[S]. AN CBS A% &\ 9)

NI

[(u, v)| < (u,u)2{v,0)2  (u, v EV)

FEGDVWALT BDIE u, v BRERED E Z, TD & ZIZRS

A B 2 REEANLZAEFRDOVLEDTHS.
ZOWMETIE, NEZEMD 3 DDORT ML EDDEL/ST A —ZIZ UTH D LD ARER
T, CBS AERDH BHDHLIE & 72> TWT Mobius HEIZEBL TV EHEDIZOWTHRARS.

EFR LI OEABIMR D = {a € C; |a| < 1} 1281} % Mobius DFlI

he b — a+b
M 1+ab
THY, WEDIEL B2 Iz S, Mobius OHUZLAFIR SIS N TW2H, TORD XS
72 K75 1%, Einstein ORFRAH G D IRAE T Ungar (2 & - T 1988 EIZHI S iz g £ T, KA
NTWED o7z, 51T Ungar [ FMEEDOENEZE/ DOFAEKIZ Mobius ORI ZHL5R L, F 7z Mobius
DAN T —f52EALT, XZ MVZERO X 5 2fEiE % H D gyrovector space D&% MENL L 72

(a,b e D)

FHG1Z Mobius gyrovector space DEFZEZ BWVHEZ 5. FHAx DS EIDOFERIEX Mobius DEE
X gyrovector space DEGERZ M OB TERBRRD I LN TE LD, TNHBHADOHELET
R=VaVvBLUOERTHY, TORERFRLOAEADHLBZE L SHHIZT S, RN
(gyrocommutative) gyrogroup, gyrovector space D& %P HEAKHIHIZ DOWTIE, HlZIX U] 22
BLTWEEEZW.

Moébius Gyrovector Spaces.[U] V ZEEDFENEZEM, BE S N7z EOR s 120 LT

Vs ={a € V;|laf]| <s}

26



&35, Mobius DF1EB & U Mobius D A H T —F21%

e po (L Eab) b)) at (1 llal) b
T+ Z(a, b) + L[l F[b]

B el a _
T®Ma—stanh<rtanh T)W (if a #0), r®,0=0

foralla,beV,,r c RIZEX->TEEIND.
RNEL(VV) D, |[V,]] = (—s,5) I8 2HE @y, @ (F—DREHMEDND) 1%

& b a+b
a = —
W T Tab

a
r® a = stanh (r tanh ™! —)
M S

for all a,b € (—s,5), r ERIZK>TEHZRINS.
ZDEE, (V,, @y, @m) 1E gyrovector space &7825. |y ], EENETNRIZP, @ &FHEL. NT
A—X s ZHRLUEWGEIE @, @, 2EL.

—fRICIL, BEIXARTH, EAMNTH, PEMNTELRVWT EISERT 5!

adb+bda
a®dbdc)#(adb)de
r@(a®b) #readrb
t(a ®b) # ta @ th.
LA U, 2 (BEXH) YUy A ufEGiEl, O v a ARl A0 5 — BB, A0 J —fEEiE
HI7ZR &0 5 & 512, gyrovector space 3R T R EENLWMMEZE L TWS.
s — 00 &9 % & VAFRZER VIR U, HF ¢, @, (JlEH DO T MV, A7 7 —fH35ED <.

Proposition.[U]

a®;b—a+b (s— )

resa —ra (s — 00).

Notation.[U] It is obvious that —u is the inverse element of u with respect to @ as well. As in

group theory, we use the notation
aob=a® (-b).

The Moébius gyrodistance function d on a Mobius gyrovector space (V, @, ®) is defined by the

equation

d(a,b) =||be all.
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Moreover, the Poincaré distance function h on the ball V, is introduced by the equation

d(a,b
h(a,b) = tanh~ X%8).
s
Theorem.[U] The function h satisfies the triangle inequality, so that (Vg, h) is a metric space. It

is also complete as a metric space provided V is complete.

Proposition. Let s > 0. The following formulae hold

. a b ad,b
i) - - =

S S S

lall* + 2(a, b) + ||b]]”
1+ Z{a,b) + &llal?||b]]?

(i) [la @, bl]* =
for any a,b € V.

Ungar @ (real inner product) gyrovector space TR #IER] #EAER], SBEERINZD £ £ T
WD L7270, UL, BEDIIRIZ L o T, i, HRIZZ DB oTWVWARLE NI RERD
A*, Mébius gyrovector space (22Tl Hilbert Wfﬁt DOENZHRWT F 1Y —=20F 72 5 < HAI
ONT &7z, PHER D 22N R 9 2 ER 2, P2 220 & S IZIFPAMES OBl R, IERE B E
2 X BERER, SE/ERAZER ED counterpart BEEINT WS, 25 IZDWTIRTEDBEEL
BREE [AW], (W1 22U TW\WzZ &7z,

2 Mobius OJEEICEEL = CBS B#ARFLR
Mobius OFNZEAHE L7z CBS BIAEAR L UT, A IZIRDEHEFL I N TE T,

Theorem.[W3] Let V be a complex inner product space and let w € V be a fixed element with
||lw|| < 1. For any u, v € V and for any s > max{||ul|, ||v||}, the following inequality holds

< [ _lull* = 2Re{u, v) + ||v]|”
~ V1= SRe(u,v) + FllulPfv]]

(u,w) — (v, w)
1 — 5 (u, w)(v,w)

(1)

The equality holds if and only if one of the following conditions is satisfied :

(i) u=w

(ii) |Jw]| =1 and u = Aw,v = pw for some A, u € C.
Remark. ¢ ZNHZERTHRKTH . TOAFERIIIRD LS IERS5N 5.
[(u, w) S5 (v, w)| < [|uSs 0]
for any [|ul], [[o]| <'s, [Jw]] <1,

o v,w % 0, vy THEE#Z 5 HMRL CBS A% 255, £/2, s 200 2T 52 212X MR
LU TCTHMEZ CBS REXNE LTINS,
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o FER (1) ZMDEIITRT I LI TER. (RHIDORESH—ITIZE D Lz 7\N.)

[{u, w) S5 (v, w)| < (1 &5 v, W) < [u s o] |Jw]] < |juos vl

Example. CIZHWT (u,v) = uv,

R

4> 2 ||u||2—2Re(u,v>—|—||v||2 H H
— — — = wif.
573 1 —2Re(u, v) + [[u|[*|[v][?

Zo &3, |l ||l < L, ||w]] < 11T LT RER

[|ul|? = 2Re{u, v) + [|v]?
= \/ T —2Re(u, v) + |[ul[2[]v] |2

[[wl]

WE—MRIZHEAL LW, EHEDI20184E 6 HDRIRBEF LI F—TIo 2R LU &, SEEM
SR BRZ R I N7,

Qusetion.(S.-E. Takahasi) Is there any constant C' > 1 s.t.

[lul[* = 2Re(u, v) + [|v]”
<Oy TTERL
1 —2Re(u, v) + [[ul[?|v]]

for any [[ul], [v]} < 1, [Jw]| < 17
IRIZEZ &S L UTIRDEEIE S N7z,

Theorem.[W4] Let V be a complex inner product space. For any u, v € V, s > max{||ul|, ||v||}
and w € V with ||w|| < 1, the following inequality holds

B \/ [[ul[2 — 2Refu, v} +[[ol[2_2|Jul]

1= ZRe(u,v) + ZllullP|o|* 1+ [lw]]*

(u, w) — (v, w)

(2)

- si2<u7 ’U)><U, w>
The equality holds if and only if one of the following conditions is satisfied :

(i) u=v
(i) w=0
(iii) |Jw]| =1 and u = Aw,v = pw for some A\, u € C.
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2| Jw]]

w

Corollary. If ||ull, ||v]| < 1, ||w|| <1, then

2 _ 2
< o, | 1ull* = 2Re(u, v) + [[v]]

<2\ 1 = 2Refu, o) + el 1N

2|Jw]]

Remark. o A5 (2) 3AFN (1) OURTH 5. 1+ w2

o ENMBEZEMTHRMETH 5.

<1720 6.

ROMmEIE, ERROROAUDER2IEHIERTHETHLILERLTNS.

Proposition. For any constant C' < 2, there exist elements u,v,w € V satisfying ||ull, ||v]| <
L, ||w|| <1 and

[|ull? = 2Re(u, v) + [[v]?
1 —2Re(u, v) + [[ul[?||v][?

(u, w) — (v, w)
1 — (u,w){v,w)

> (C

[[w]].

WO ML, R (2) & HIIZA CBS AER L 2 NS OERI T BMIZ A L TEHHIT = 2
WZ EeaRERLTWS.

Proposition. For any constant C' > 0, there exist elements u,v,w € V satisfying ||ull,||v]| <
L, [Jw|| <1 and

1 2

1
> (C . .
\/1—2Re<u,v>+||u||2||v||2 1+ [[w]f?

1 — (u,w){(v,w)

Mobius #1385 & OF Mébius A T — 50512 B U 72 & 2 R Cauchy BUARSEA DY [(W2] T
HNTWA. IROEHIE, NFEZEM & Mobius f13 £ O Mobius AN 7 — {5 A & DR D IR 12
BWT, CBS BAERDHRE HARRILE L AR I NES.

Theorem.[W4] Let V be a complex inner product space. For any u, v € V, s > max{||ul|, ||v||}
and w € V with ||w|| < 1, the following inequality holds

ul]? — 2Re(u, v) + ||v||?
s||w||®s\/ o Aty ®)

— 2Re(u, v) + Sful ]|

The equality holds if and only if one of the following conditions is satisfied :
(i) u=wv
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(i) w=0
(iii) |Jw|]| =1 and u = Aw,v = pw for some A, u € C.
Remark. ¢ REX (3) IZAEX (1) DHETHS. 0<r<1,0<a<sBH5IEr@,a<alZns,
o EAMEMTHRAMKTH L. ZOAEFERFRD LS ITERSNS.
Let s > 0. For any elements u,v,w € V with ||u||,||v|] < s, ||w]| <1,
[(u, w) Ss (v, w)| < |wl]] @s |lu S v]]- (4)

In other words,

tanh !

|<u7w> Os <U7w>| S ||w||tan
S

R
S

or

h ((u, w) , (v, w)) < h(u,v) [|w]]

o RER (3) % (4) T s — oo &35 & fltik7 CBS %%
[(u, w) — (v, w)| < [|wl|[[u—vl|
METEEND.
7, A D V1.

Theorem. Let V be a complex inner product space and let w € V be an arbitrary fixed element
with [|w|| < 1. If K is a constant satisfying

(u,w) — (v, w)

2 _ 2
ke |Jul|? — 2Re(u, v) + ||v]]
1 — (u,w)(v,w)

= 1 )
1 —2Re(u, v) + [[u[?|[v[|?

for any any element u,v € V with ||ul, ||v|| < 1, then ||w|| < K.
BT, RERX (4) DI E UT Riesz DRBEH DV & DD counterpart ZHnd 5.

Definition. Let V be an inner product space. For any map f :V; — (—1,1), define f; : Vg —
(_87 8) by

for any element x € V.

Theorem.[W5] Let V be a real inner product space, ¢ € V with ||¢|| < 1, and consider the
functional f : V; — (—1,1) defined by

f(x) = (z,c)

for any element & € V;. Then,
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(i) For any € > 0, f satisfies the following conditions:

—{fs(@) B f(¥)} & fs (D y) = 0(s"7) (5 = 0)

—{reufs(@)} @ fi (re,x) = o(s™) (s = o0)

for any element x,y € V and any real number r € R. Here, f(s) = o(s*) (s — oo0) means

that @%0 (s = 00).

SOé

(ii) The following formula

sup  ~@LIW)
z,yeVy, x#ty h’ (.’E, y)

holds.

Theorem.[W5] Let V be a real Hilbert space. Suppose that f : V; — (—1,1) satisfies the
following conditions

- {fs(m) Ds fs(y)} Ds fs (w Ds y) —0 (3 — OO)

—{T’®st(w)} Ds fs (T®sw) —0 (S_>OO)

and

sup

h(f(z), f(y))
0= z,yeVy, z#y h(x,y) =

Then,

(i) For any € V, lim f,(x) exists as a real number.
S§—00

(ii) There exists a unique element ¢ € V satisfying

. f

lim fy(x) = (x,c reV and sup —————= =||c||.
lim fi(z) = (®,¢) ( ) S ) le]|
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Estimates for the weighted polyharmonic
Bergman kernel and their
application(announcement)

Department of Mathematics, Daido University Kiyoki Tanaka

Abstract

We consider the Bergman type space with respect to polyharmonic functions. The pur-
pose of this article is the announcement of the author’s paper [6]. Based on [6], this article
describes the estimates for the reproducing kernel of the polyharmonic Bergman kernel, the
Gleason problem and the Lipschitz type characterization for polyharmonic Bergman space
without proofs and details.

Throughout this article, let B be the open unit ball in the Euclidean space RY. For m € N,
1 < p < ooand a > —1, the weighted m-polyharmonic Bergman space b7?(B) is the set of
polyharmonic function f of degree m in B such that

1/p
\ummp::(ékﬂmwu—wﬂ%%m) < .

In particular, when p = 2, the weighted m-polyharmonic Bergman space 5”-*(B) is a reproducing
kernel Hilbert space. We define the weighted true m-polyharmonic Bergman space bgm)’2(B) by

2 (B) = 87 (B) © b 2(B).

We denote the reproducing kernels of 57?(B) and b&mm(B) by Rmo(z,y) and Ry o2, y), respec-
tively. We call R, o(z,y) the weighted m-polyharmonic Bergman kernel. For simplicity, when
a =0, we omit to write «, for example, b™P(B) := by (B).

On the theory of Bergman type space, the estimates for the reproducing kernel play important
roles, for examples|1, 3]. Hence, we should calculate the estimates for Ry, o(x,y) and R(m).o(2,y).
Form = 2, T.[5] gave the estimates and explicit form for the biharmonic Bergman kernel Ry ,(x, y).
In [6], we give the estimates for R, o(z,y) based on Pavlovié’s results[4].

Theorem 1 (Theorem 1.2 in [6]) For m € N and a > —1, there exists a positive constant C
such that

C C
|Rna(z,y)] < T Nta and  |VyRma(2,y)| < W

[,y
N
_ 20,12 _ _
) ’ ) - - - 191 - 1, ) )
for xz,y € B, where [x,y] =1 =2z -y + |z|*|y|* and = -y Zmy' for x = (x1,29,--- ,xN) and
i=1

y=(Y1,92, ,Un).
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As an application of Theorem 1, we obtain the estimates for derivative of unweighted m-
polyharmonic Bergman functions.

Lemma 1 (Lemma 4.2 in [6]) Assume 1 < p < oo. One has
Lf = FO)lyms = [1(1 = [2[*)[V f]| 2
for f € b™P(B).

By Lemma 1, we mention the Gleason problem and the Lipschitz type characterization for
polyharmonic Bergman space.

Theorem 2 (Gleason problem, Theorem 4.1 in [6]) For 1 <p < oo and f € b™P(B), there
ezist functions g; € b™P(B) (j =1,---,N) such that

fla) = £(0) = Y wjg5(a).

Theorem 3 (Lipschitz type characterization, Theorem 4.2 in [6]) Let 1 < p < oo and
f € H™(B). Then, f belongs to b™P(B) if and only if there exists a function g € LP(B, (1—|z|*)Pdz)
such that

1f(x) = f)] < |z =yl (9(z) + g(y))

for any v,y € B.

Remark 1. After the conference, the author knew a paper [2]. In [2], Lemma 1 is shown without
estimates for the reproducing kernel. The author thanks Professor M. Pavlovié¢ for introducing a

paper [2].
Remark 2. At the conference, the author could not calculate the lower estimate for Ry (2, ).
After that, we obtain the lower estimates for the unweighted kernel:

C

>
fon o) 2 oy

for some constant C. If we make further progress about the lower estimate for Ry (z, ), the
author would like to talk it at next Conference on Function Algebras.
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Mean Lipschitz conditions and
growth of area integral means of

functions in Bergman spaces!

Department of Mathematics

Tokai University
Sei-Ichiro Ueki

1 Introduction

Let D denote the open unit disk in the complex plane C and dA the nor-
malized area measure on D. Let H(D) be the set of all analytic functions
on D. The classical Hardy space is denoted by H? and the Bergman space
is denoted by AP (p € (0,00)). It is well known that the function in H? has
many properties. One of properties of f € H? is the Hardy and Littlewood
theorem related to boundary value functions. For 0 < p < o0, 0 <r < 1 and
f € H(D), the integral mean M,(r, f) is defined by

w0 =( [ K |f<rei9>|pd6>1/p

27

and '
Muo(r, f) = sup [f(re”)].

0<0<2m

Let f* denote the radial limit of f € H? and put 7(f*)(0) = f*(0 +¢) for
t € R. Hardy and Littlewood proved the following theorem.

Theorem A. Let 1 < p < o0, 0 < a < 1. For f € HP the following
conditions are equivalent:

(@)  N7(f) = f*llar = O(Jt]*) as t =0,

()  My(r,f)=0(1—-r)*Y asr—1".
The above condition (a) is called the mean Lipschitz condition, which is

appeared in the definition of the analytic Lipschitz space. For f € H(D) and
0 <r < 1, consider the dilated functions f, of f, that is f,(z) = f(rz) (z €

IThis is the joint work with Ajay K. Sharma. This research is partly supported by
JSPS KAKENHI Grants-in-Aid for Scientific Research (C), Grant Number 17K05282.
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D). It is also known that || f, — f||lg» — 0 as r — 17 if f € HP. According to
2], Storozhenko [5] proved that the mean Lipschitz condition (a) of Theorem
A is also equivalent to || f, — f|lg» = O((1 —7)*) as  — 1. Hence we can
collect their results as follows.

Theorem B. Let 1 < p < 00, 0 < o < 1. For f € H” the following
conditions are equivalent:

(a)  |Im(f*) = f*llar = O(|t|*) ast — 0,

(b)  My(r,f)=0((1—=r)*") asr—17,

) Nfi=fller =0((1 =7)%) asr —1".

P. Galanopoulos et al. [2] have recently proved that the function in the clas-
sical Bergman space AP (1 < p < oo) has the same property as Theorem
B. To adapt mean Lipschitz condition and integral mean over the unit circle
for f € AP, they introduced the following rotation function and area integral
mean of f:

ri(f)(z) = f(e"z) (t€R)

and
1/p
AAnﬁzHﬁhw=<4UUdWM@0 (r € [0, 1))

For f € H(D), if there exists f* a.e. on D, then 7(f*) = (r4(f))*. Thus this
notation r; can translate the condition (a) of Theorem B into the version of
Bergman space. They proved that the same result as Theorem A also holds
for fe AP (1 < p < 0).

Theorem C.([2]) Let 1 < p < 00, 0 < a < 1. For f € AP the following
conditions are equivalent:

(@) re(f) = fllar = O(t]*) as t — 0,
(b)  A(r, f)=0(1—=r)*") asr—17,
() Nfr = fllae =01 —7)%) asr — 1".

In [2], they also mentioned that the analogue of Theorem C is valid in the
Dirichlet space and the disk algebra.

2 Results

Motivated by their study, we will consider the same problem for weighted
Bergman spaces and related spaces. For a given positive continuous function
o on [0,1), we extend it by o(z) = o(|z]) for z € D. We call such o a

weight function on . For a weight function o, the weighted Bergman space
AP (D) (p € (0,00)) is the space of all f € H(D) such that

Hﬂwz(AWM%@WWOW<m.
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For the case p = 0o, we will introduce the related space A°(ID) as follows:

A3(0) = {1 € HO) e =59 |72l (2) < o0

If we assume some conditions on weight o, then we find that f € A2(D) (0 <
p < o0) has the property || f. — f|lpo = 0asr — 17. For p = oo, we consider
the subspace of A2°(DD) such that a function f satisfies a vanishing property
f(z)o(z) — 0 as |z| — 17. Then such a function f also has the property
| fr — flloo.e = 0 as 7 — 17. Since a function in H? or AP has the same the
limiting behavior, it is expected that f € AP (D) also has the same properties
as Theorem C. In the spirit of the result in [2], we shall define the weighted
area integral mean A7(r, f) for f € H(D) and 0 <r < 1. We put

i
A ) = ol = (/D |f(rz)] a(z)dA(z)) if0 < p< oo,

sup |f(rz)|o(z) if p = 0.
z2€D

By a simple calculation, we find that

{As(r, N} = 2/0 to(t)M2(rt, f)dt = %/0 so (2) ME(s, f)ds

and
AL(r.f) = sup Ma(rt, f)o(t) = sup Ma(s, f)o ().

0<t<1 0<s<r

Now we introduce the notion of an admissible weight function. The follow-
ing definition is due to Kellay and Lefevre [3] essentially. A weight function
o is called admissible if o satisfies

(W1) o is non-increasing,
(Wa)  a(r)/(1 —r?)** is non-decreasing for some § > 0,
(W3) o(r) —0asr—1".

The typical example of admissible weight is o(r) = (1 — r?)* (a > 0).

Next we introduce the Békollé weight which is an analogue of the Muck-
enhoupt weight. We quote the following notion from Luecking’s paper [4].
For each @ > —1, let dA, denote the normalized measure on I defined by
dAn(2) = (a+1)(1 — |2[*)*dA(z). For p > 1 and a > —1, the class B,(«)
consists of all weight functions ¢ with the property that there is a positive
constant C' such that for every a € D,

pa

(/s(@ UdAa) ' (/s(w U_Z/dAa) "< C{Aa(S(a)}",

where 1/p+1/p' =1, and S(a) = {p.(z) : Re(za) < 0}. Note that we put
S(0) = D. Aleman and Constantin [1, Theorem 3.1] proved that if a weight
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o satisfies 0(2)/(1 — |2]?)* € By, () for some pg > 1 and o > —1, then the
norm || f||?, is equivalent to

\f(0)|p+/D\f’(2)!p(1 — [2[*)Po(2)dA(2).

To estimate the growth of f’ for f € A2(D), we will need the above result.
Hence we have to consider the condition:

(Wy) % € B,,(n) for some py > 1 and n > —1.

If an admissible weight function satisfies (W}), we call it an admissible Békollé
weight function.

When 1 < p < 0o, we will prove that the analogue of Theorem C is true
for a function f € AP (D) with admissible Békollé weight. For the case p = 0o
we do not need the condition (W,) in the argument for the space AX(D).
Namely the analogue of Theorem C holds for f € A%°(D) with admissible
weight.

Theorem 1 Let o be an admissible Békollé weight function, 1 < p < oo,
0<a<1andfe AP(D). Then the following conditions are equivalent:

(@) Nr(f) = fllpo = O(Jt]%) as t =0,
(b)  AZ(r f)=0(1—7r)*") asr— 1",

) Nfi—=fllpe=0(1—-7)*) asr —1".

Theorem 2 Let o be an admissible weight function, 0 < a < 1 and [ €
A>®(D). Then the following conditions are equivalent:

(a)  re(f) = Flloow = O(Jt|*) ast — 0,
(b)  AL(r f)=0(1—-r) ") asr—1",

@) fs = flloow = O((L = 7)) asr — 17,

Furthermore, we also consider the Bloch-type and the Zygmund-type
space. By following in the normal weighted Bloch or Zygmund-type spaces,
we will introduce the Bloch-type space B, (D) and the Zygmund-type space
Z,(D) for an admissible weight function o as follows:

B,(D) = {f € H(D) : sup |f'(2)]o(2) < oo}

zeD

and

2,(D) = {f € HD) : swpl/"()lo(2) < oo} |
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Moreover, for f € B,(D), its norm || f||5, is defined by

1f 1, =[O + 1 loo.o
Also the norm of f € Z,(D) is defined by
1fllz, = 1L+ 1O+ 1o
Since f € B,(D) (or Z,(D)) if and only if f' € AX(D) (or f” € A>®(D)), it
is expected that the same type result of Theorem 2 holds for these spaces.

Instead of A7 (r, f) of (b) in Theorem 2, we consider the quantity

B(r, F) = ||[Frlls, = [F(0)| + rsup [F'(rz)|o(z) (1)

zeD

for F € H(D) and r € (0,1). Then the analogue of Theorem 2 is valid in the
Bloch-type space.

Corollary 1 Let o be an admissible weight function, 0 < o < 1 and f €
By(D). Then the following conditions are equivalent:

(@) |lre(f) = flls, = O([t]*) ast =0,
b)) B f)=0(1-7) Y asr—17,

) Nfe—=flls, =01 —=r)%) asr — 1.

In order to consider the Zygmund-type space, we also introduce Z7(r, F') =
||Fv]|z,. Then we have that

Z7(r, f1) = £/ ()] + £ (0) + r* AL (r, £7). (2)
By applying Theorem 2 to f” (€ AX(D)), we also obtain the following result.

Corollary 2 Let o be an admissible weight function, 0 < o < 1 and f €
Z,(D). Then the following conditions are equivalent:

(@) lre(f) = fllz, = O(Jt[*) as t =0,
(b) Z°(r, fY)=0(1-r)*Yasr— 17,

() Ifr=fllz, =0((1=7r)%) asr — 1.
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SCHUR PARAMETERS AND THE SPACE OF FINITE BLASCHKE
PRODUCTS

TOSHIYUKI SUGAWA

ABSTRACT. This is a preliminary version of the author’s forthcoming paper. Our main
result states that the Schur class with the topology of uniform convergence on compact
subsets is homeomorphic to the closed unit ball of the space ¢? with weak-* topology.
As an application, we show that the space of finite Blaschke products of degree d is
homeomorphic to the 2d 4+ 1 dimensional sphere.

1. INTRODUCTION

The function
zZ—a

Tul2) = 1—az

is an analytic automorphism of the unit disk D = {z € C : |z] < 1} (often called a disk
automorphism) for every a € D. A function of the form
d
f(z)= e'? H Taj(z)
j=1

with § € R,a; € D is called a (finite) Blaschke product of degree d. The following
topological characterization is sometimes useful.

Lemma 1.1. An analytic map f : D — D is a Blaschke product of degree d if and only if
f: D — D s proper and of degree d.

Here, a proper continuous mapping f : D — €2 is said to be of degree d if the equation
f(z) = w has d roots in D for each w € 2, counted according to multiplicity. (It is known,
more strongly, that a holomorphic map f : D — D is a Blaschke product of order d if f
is of degree d in the above sense.) In particular, we have the following corollary.

Corollary 1.2. Let f be a Blaschke product of degree d. Then so is Lo f o M for disk
automorphisms L and M.

We denote by %, the set of Blaschke products of degree d (d =0,1,2,...). We set
) d
Ba=\] %;.
§=0

The sets B, and A, will be equipped with the topology of locally uniform convergence
on D. Certainly it should be known that %, is a compact Hausdorff (indeed, metrizable)

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. Blaschke product, Schur parameters.
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topological space. However, it seems that the topological structure of A, is not well
studied. One difficulty is a degeneracy phenomenon. For instance, consider the disk
automorphism
02— G
fa(z) =e 1—as
for a fixed # € R. When a — ¢ € T = 9D, the function f, tends to the constant function
—e0+) ocally uniformly on D.
Obviously, £y = 0D = T = S'. Since an element f of %, = Aut(D) has a representation
of the form
f(2) =T, (2) = eieﬂ,
1—az
we see that %) = T x D, which is homeomorphic to a solid torus. Thus we expect
By = By U P, = S3. One of our main results is the following.

Theorem 1.3. The space B, is homeomorphic to the (2d + 1)-dimensional sphere S* 1.

In what follows, we will show a more general results, from which the theorem will be
deduced.

2. SCHUR PARAMETERS

The set
& ={f:D — C holomorphic, |f| <1}

is called the Schur class. Each function f in .# can be expanded in the power series
o0
f(2)=co+ciz4c?+--- = chzn.
n=0
However, the set of those coefficients {c,} is not convenient to parametrize the class .7.
As we will see below, the Schur parameters are conveniet to describe the class .7.
For a function f € .\ %, consider the new function

(o)) =1 LE T
where
v = f(0).

Since the origin is a removable singularity of o f(z), the function o f belongs to .. When
f € Ay, we set of = 0 as a convention. In this way, we define a mapping o : .%¥ — 7.
Observe that o(%y) = By1 and 0 (By_1) = By for d > 1. We define inductively f,
by fu = o(fo_1) with fo = f. Let 7, = f.(0) € D (n > 0). These are called the Schur
parameters of f € .. In this paper,

7:7(.}0) = (,7077%"') GDNO
will be called the Schur vector of f, where Ny = {0, 1,2,...}. Note that the Schur vector
of the function f; = of is (1,72, ... ), which is the backward shift of the one-sided (uni-
lateral) sequence 7 = (79,71, - - - ). The following result due to Schur [2] is fundamental
in our discussion. A comprehensive account on the Schur agorithm is found in the huge
monograph [3].
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Theorem 2.1 (Schur’s theorem (1917)). For a function f € .7, the Schur vector 7 =
(Y0, 71, - - - ) satisfies one of the following two conditions:

e || <1 for all n.

o vl <1,... 7l < LYl =1L, 941 =0,%42=0,... for somen > 0.
The latter occurs if and only if f € %B,. Conversely, for any sequence 7 = (Y0,71,---)
satisfying one of the above conditions, there exists a unique function f € . such that

TH=7

We denote by X the set of vectors ¥ = (7,71, . ..) satisfying one of the above two
conditions. Then . can be identified with X, as a set. Here, we briefly explain an idea
of the proof of Schur’s theorem (see Wall [4] for details).

For convenience of the reader, we give an outline of the proof of Schur’s theorem. Let
f €. and define f; (j =0,1,2,...) as before. By definition,

1 fi(z) =
fj+1<z) = > : w;
which can be rewritten as
zfi1(2) +7;
14+ 72fj41(2)
(1= |yl*)zf

fi(z) =
(2)

:’Y]“‘ _ j+1
’}/jijJrl(Z) + 1
1—1|v*)z

e bi)e

T fin(2)

By a repated use of this, we arrive at the Schur continued fraction expansion, which
converges locally uniformly on the unit disk D :

f(Z) = + (1 B |70‘2)z
o 1
(1=l
é! + - 1
Y12 +
Y2+ -

Let us see how to show it in more detail. For simplicity, we consider only a generic case;
namely, |v;| < 1 for all j. We denote by 7 the Mobius transformation represented by the

matrix
A (’_yjz 1), 7=0,1,2,....

Namely, Tj(w) = (2w + v;)/(7;2w + 1) and T3(D) C D for each z € D. Then

£(2) = zfir1(2) +;

T 14z Lla(2):

Hence,
f(z) = (TooTio- o Tj)(fi+1(2)) = Uj(fi41(2)),

45



where U; =Ty o Ty o---0Tj. The Mobius transformation Uj is represented by the matrix

A A= (Pi(2) ai(2)

B=aoa= (1 23).
The truncated continued fraction is expressed by Fj(z) := U;(0) = ¢;(2)/s;(z). Since
det A; = (1 — |v4]?)z, we have
J
o3, = 7 T[(1 = ).
k=0

Then, by the formula
(ad — be)(wy — we)
(cwy + d)(cws + d)

U(wl) — U(’wg) =

for U(w) = (aw +b)/(cw + d),

_ S (@ Thoo(L = 1wl
{ri(2) fir1(2) + 55(2)}s5(2)

f(z) = Fj(2) = Uj(fj+1(2)) — U;(0)

On the other hand,
[f(2) = Fi(2)] < [f () + [F5(2)] < 2.
Thus (a slightly extended) Schwarz Lemma now yields

1f(2) = Fj(2)] < 2[z*

Thus the truncated continued fraction converges to f(z) :

1—|%l?)z
Fj(z) =70+ ( |0|1) = [(2).
702—’_ 2
1—
o (1= [ml?)=
g

..._|_/'}/j

Conversely, if we are given a sequence v, (j = 0,1,2,...) with |y;| < 1 we can construct
f as a limit of the functions Fj defined as the truncated continued fraction. In this way,
we consruct a function f € . which has v; (7 =0,1,2,...) as its Schur parameters.

3. TOPOLOGY OF THE SCHUR CLASS

The Schur class . has the topology of uniform convergence on each compact subset of
D. Then . becomes a compact separable metrizable space. We would like to understand
this topology in terms of the Schur parameters. By Schur’s theorem, we can identify %y
with the set

{(Yos -+ 370,0,0,... )t |yl <1 (G=0,...,d=1), |7 =1} =D x T x 0,
and thus . can be regarded as the set

Xo=D% U JD*x T x0).

d=0
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However, the topology of X inherited from . is different from the relative topology in
D', At this point, the following statement is almost clear.

Proposition 3.1. %, is homeomorphic to D¢ x T.

Remark 3.2. In the recent book (1|, Garcia, Mashreghi and Ross describe the space, say
Y, of Blaschke products f of degree d with f(1) = 1 as the symmetric quotient of the
set of d-tuples of zeros of f(z) or the set of d-tuples of the critical points of zf(z). These
are topologically the d-fold symmetric product of D, which is known to be homeomorphic
to DY, Hence we have again the same topological description B, = B9 x T 2D x T.

We define an equivalence relation in D as follows. Two vectors ¥ = (v,M,...) and
5= (09, 01,...) in D™ are said to be equivalent and written as 7 ~ 4 if either ¥ = 4, or
there is n € Ny such that v; =9d; € D for j =0,1,...,n — 1 and that v, =9, € T.

Let X be the set of all the equivalence classes [Y], 7 € ENO, and let 7:D'° — X be
the canonical projection: 7(¥) = [7]. Let X be equipped with the quotient topology so
that 7 is a continuous open mapping. Note that the restriction 7 : Xg — X is bijective.
Then we have the following result.

Theorem 3.3. X is homeomorphic to ..

It is, however, still not clear how A, is embedded in X. The construction of X is rather
artificial. In what follows, we will construct a more natural realization of the quotient

map 7. To this end, we define
Y =v1i-hP

for v € D. Then, for ¥ = (79, 71,...) € ENO, we set
(3.1) (@0, x1,...) = E(Y) = (90, %71 %7172 - - - )-

More precisely, xg = v9 and

n—1
_ *
= ][
Jj=0

for n =1,2,.... The following can be verified easily by an induction argument.

Lemma 3.4.

g g k ok * - * 2
Z |510j|2 = Z Yo '7j-17j|2 =1- H (’Yj) .
=0 =0 =0
In particular, we have
IE@5 =110 =)
n=0

Here, for & = (zg,x1, ... ),
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We denote by Y the closed unit ball of the space £ = (?(Ny) = {# € CNo : ||F]|, < +o0}.

Then the mapping E defined in (3.1) can be regarded as a map from D' into Y. The
following can be verified easily.

Proposition 3.5. For ?,ge ENO, E®) = E(g) iff 7 ~ 5
For further properties of the mapping E, we show the following lemma.

Lemma 3.6. Suppose that a vector (zg,...,x,) € C"™! satisfies the inequality

n—1
Z |Z’j‘2 < 1.
=0
Then there is a vector (Yo, ...,7n) € D" x C such that
=% - U=01...n).

Proof. We show by induction on n. When n = 0 the assertion is clear. We assume that the
assertion is true up to n and show that the assertion is true for n+1. If |z |*+ - -+|z,|? < 1,

by induction assumption, we have 7y, ..., 7, as above. By Lemma,
n n n
%\ 2 * % * 2 2
L=TT G0 =D il =)l < 1,
=0 =0 =0
which implies 7§ - - - v # 0. Hence, we can set
Tn+1
Tn+1 = e
Yo Tn
Then (o, ..., 7n+1) satisfies the required conditions. O
As a consequence of the previous lemma, for a point (o, ..., z,) € S*! c C"*! with
x, # 0, we can construct a vector (7o, .. .,7,) such that

T :78"'7;,1%' (7=0,1,...,n).
Then, by Lemma 3.6,

1= P =Y il =1=-T g
j=0 j=0 j=0
and thus v} = 0, which means v, € T. Here, we used the fact that x, # 0 implies
that v; € D for j = 0,1,...,n — 1. Therefore we have shown E(vo,...,7,,0,0,...) =
(o, .-+, Tn,0,0,...). We summarize as follows.

Lemma 3.7. E(D” x T x 0) = S¥+1.

We next consider ¥ = (o, x1,...) with 337 |2;[* < 1 for any n. Then by the propo-
sition above, we can construct a sequence ¥ = (79, 71,...) such that F(y) = Z. This,
together with the observation in the previous slide, means that the mapping £ : Xg — Y
is surjective. (Recall that Y is the closed unit ball of £2(Ny).) Finally, we obtain the next
result. The proof will appear in a forthcoming paper. It says that F is a realization of

the projection 7 : DY X.
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Theorem 3.8 (Main Theorem). The mapping E : D° Y = {Z € P(Ny) : || Z]|l2 < 1}
is surjective, open and continuous, where Y is equipped with weak-x topology of ¢*. In
particular, the mapping f — E((f)) gives a homeomorhism from . to Y.

Proof of Theorem 1.3. The topology of B, is same as the relative topology in .. Recall
that the Schur vectors of %y form the set D" x T x 0. Since E(ﬁd x T x 0) = S**1 by
Lemma 3.7, we now see that %, is homeomorphic to S?**! by the main theorem. O
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Integral operators on the Dirichlet-type spaces

Shuichi Ohno

1 Introduction

Throughout this article let D be the open unit disk in the complex plane and H(D) the space
of all analytic functions on D. For a fixed function ¢ € H(D), we define two types of integral
operators on H(DD):

S,() = / TR(OF Q) de

and

T,i() = / SO dc.

The bilinear operator (f, g) — / f ¢ was introduced by Calderén in harmonic analysis in the 60’s

[3]. After his research on commutators of singular integral operators, Pommerenke was probably
the first author to consider the boundedness of the operator T}, on the Hardy space in late 70’s. A
systematic study of T}, in late 90’s was initiated by Aleman and Siskakis. See surveys [1, 2, 9, 10]
for more background and results on 7,.

We will consider these integral operators on the following space. For 0 < p < oo and —1 < a <
00, let P denote the Dirichlet-type space of all functions f € H(D) for which

112 = 1FOP + (1 +a) / (2P - 22) dA(z) < oo,

where dA(z) = dxdy/m denotes the Lebesgue area measure on D.

The space D is the classical Dirichlet space and D? is the Hardy-Hilbert space. If a = p — 2,
then ’Dg_g is the Besov space. For each p, the range of values of the parameter o for which ©? is
most interesting is p —2 < a < p— 1. If @ > p — 1, then it holds that ©? = A} . On the other
hand, if @ < p — 2, then ®2 C H*.

The Carleson measures for the Dirichlet-type spaces have been studied by some rserachers. In
particular, the case a = p— 1 has actively been investigated ([5, 6]). The space ©}_, is the closest
to the Hardy space HP. If p > 2, then H? C 9271 by a classical result due to Littlewood and
Paley ([7]) and if 0 < p < 2, then ®) ; C H?. (For example, see [4].)
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We need the next space to characterize properties of integral operators. For 0 < p < oo, let B?
denote the Besov-type space of all functions f € H(ID) for which

11 = £ + sup / PP~ 2P 2(1 - |pa(2)?) dA(2) < oo,

where ¢, (2) = (a — 2)/(1 — az).
Obviously, B? is a Mdbius invariant subspace of @g_l. Let B? be the space consisting of all
functions f € H(D) for which

lim / PP 2221~ |pa(2)]2) dA(2) = 0.

la|—

For nonnegative quantities X and Y, we use the abbreviation X <Y or Y 2 X which means
X < CY for some inessential constant C'. Also, we write X ~ Y whenever X <Y < X.

2 The main results

We here characterize the boundedness and compactness of S, and T, on the Dirichlet-type
spaces D),
At first we consider the boundedness of S, and T,,.

Theorem 2.1 For 0 < p < 0o, S, is bounded on ©}_, if and only if p € H™.

Proof. Suppose ¢ € H*®. Then, for f € D¥_,, we have

p—1

IS:£1-1 =p [ 17 P (1= |:P7dAG)
S el 1

Conversely, we here show only the case 0 < p < 3. For a € D, let

fi(z) = (%)1@
Then

P (1 a2y A=1aP)? o eyigas
Iy = (= o p | Gl Py taacs)
_ Jal?)? (1 —la?)?
S0 =lof +

S @ =lal*)* + (1= o).
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1Spfull? s = p / () F(2)P (L~ |22t dA(2)
= [Io(a)r 1"“L|Z< ~yaAc)

- e (DY
(1=l le(a)l?,

where the last inequality holds by the subharmonic property of functions ([11, p.73, Lemma 4.12]).
By the boundedness of S,

15 fallp—1 S I fallp—

S0
(L= lal*)" M)’ < (1= laf*)* + (1 — |a]*)"
and we have |p(2)] < C.

Next we will consider the boundedness of T,,.

Theorem 2.2 For 0 < p <2, T, is bounded on 9571 if and only if ¢ € BP.

o= (e

Then f, € ®, ; and || ful[,-1 < 1. Then

Proof. For a € D, let

10l = [ I Il appaac

—az|?
-/ |go'<z>|p<1 — 22721 = laa(2)/P)A(:).

So we have ¢ € BP. This implication holds for the case 0 < p < oc.

Conversly, assume ¢ € BP. By [11, p.263, Corollary 9.13], du(z) = |¢'(2)|P(1 — |z|*)P71dA(z)
is a Carleson measure. That is, the inclusion mapping from H? into LP(ID,du) is bounded for
0 < p < oo. Moreover, the inclusion mapping from ’Dg_l into H? is bounded for 0 < p < 2.
Consequently T, is bounded on ©%

We consider the compactness. To characterize the compactness, we need the following “weak
convergence theorem”, which is easily proved by the normal family argument.

Proposition 2.3 Let T = S, or T, for analytic function ¢ on ID. For 0 < p < oo, suppose that
T is bounded on @5_1. Then T 1is compact on @Z_l if and only if for any bounded sequence {f,}
in D), that converges to 0 uniformly on every compact subset of D, ||T,, f,||,—1 converges to 0.
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Theorem 2.4 Let 0 < p < oo and suppose that S, is bounded on @i_l. Then S, is compact on
P if and only if ¢ = 0.
Proof. We show only the case 0 < p < 1. For A\, € D with |[\,| — 1 as n — oo, let
P (L= )
(A =p)hy (1= Xpz)dn/p

Then f, € ®; 4, || fallp-1 is bounded and f,, converges to 0 uniformly on any compact subset of

fn(z) =

D. Then, by the compactness of S,
|Spfullp-1 =0 as n— oo.

That is,

82l = [ otpC ‘“>|4 (1 2Py dA()

H’“”_(*”"(P?j' (1 = =Py~ tdA(2)

2 (AP

So we have ¢ = 0.

Theorem 2.5 Let 0 < p < 2 and suppose that T, is bounded on Dg_l. Then T, is compact on
b1 if and only if p € B}.

Proof. For A\, € D with |\,| = 1 as n — oo, let
1—|\,? 1/p
= (o)
(1—X\.2)
Then f, € D}, 4, || fallp-1 is bounded and f,, converges to 0 uniformly on any compact subset of
D. Then, by the compactness of T,

T, fullp-1 — 0 as n — oo.

That is,

p 1 — |/\ |2 2\p—1
1T fullp—1 | |1 — |2(1 — [27)" dA(z)

= / [P~ 2721~ fpa(2) P)A(2).

So we have ¢ € Bf. This implication is true in the case 0 < p < oo.

Conversly, assume ¢ € Bf. By [11, Theorem 9.14], du(z) = |¢'(2)[P(1 — |2)*)P"'dA(z) is a
vanishing Carleson measure. That is, the inclusion mapping from H? into LP(ID.u) is compact
for 0 < p < co. Moreover, the inclusion mapping from @5_1 into H? is bounded for 0 < p < 2.
Consequently T, is compact on @g_l

Réttyé ([8]) also considered the boundedness and compactness of 7T,.
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Surjective isometries on a Banach space of
analytic functions on the open unit disc

Department of Mathematics, Niigata University Takeshi Miura
School of Pharmacy, Nihon University Norio Niwa

1 Introduction
(M, [|lla), (N, Il y) ZERNEN (EFE) IV LZEFET 5.

IT(a) =T®)y = lla=blly (Va,be M)

BT E, TR (M |,) 75 (N, |- y) ~OXIEHMTE (sometry) V5. 7L, T&
T3 3 U ERBPYE (complex linear) ZRKE L TWRW. Mazur-Ulam theorem [16] 12 &
D, JIVAZERDS IV LEMANORPERBEGHR T 1, T0)=0%2#=3R0I1E, EHE (real
linear) TH 5.

BRAZSIRRE IR D, IOV LNZERD S 7OV NN DB RARIE F IR SR DL T b T
W5, 7z, ERIFHN 57425 Banach ZE[H] EOE R EHMGHROMAL I ADHD. T
2 DFER RS 57280, ZD—HEMNT 5.

D % &I O BABMR, D% BAFMNN, T 2HEAMEE T 5. H(D) 2D LIS
hhromdfatds.

27 oo dl z
= {f )l = s | [ 150 | < °°}

1<p<oo®&E, (H||-||z) % #3% Banach 22 TH 5. ¥z, (H2 ||| me) & #5% Hilbert
ETH .

Theorem 1 (Forelli [7]) pZ 1 <p<oohDp#2&T 5. TH(H|| ||lgr) 25 (HP,||||u»)
DR LRI FRMG R T8, ceTeHEMEHR: D - DHWHEMELT,

Tiz) =c-(§(2)7 - f(6(2),  (f € H”, 2 € D)

YERTHEATES. W, EOXSCTREDBE, T (H?, || |lur) 5 (H|| - ||me) ~D%
PRI FRE R L 7R 5.

p=1&79%&, deLeeue, Rudin and Wermer DF5ER [5] Mg o b.
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SP:={feHD): f € H} (1<p<x)
EHEL. SPITIFIRDED R /) WL EEDDLHENTE 5.

flle = £+ [[f ||z
flls = I flloo + [ 11
= i2§|f(z)|+||f/“f“’
fle HP751E, £ D ~ESHTHEET 2 AT E 20T ([6, Theorem 3.11)), ||| = sup.cs |f(2)]
AEALENTES. 1<p<ooDEE, (8| 1l,). (S |Is) FZNENEZE Banach 7=
TH5.

Theorem 2 (Novinger and Oberlin [20]) pZ 1 <p<ocodDp#2 LT 5.
(a) T (S| |ls) 225 (SP, ]| - ||o) NDEH LERILFHMGHR L $5 L, ce T LEMGH
6:D— DAFELT,

1

Tf(z>=c~f<0)+/[0 }<¢'<c>>5f'<¢<<>>dc (f €8 2€D)
LRTENTES. HIZ, EOESITTE2EDD L, TIE (S| |l0) 25 (S, - ||,) ~D24 72
BRI FEME R L7 5.

(b) TS| ||g) 25 (SP, ]| - ||s) ~NDEF R EHEMEHMGHR L T2 L, ceT & EFMEH
¢:D—DMBEIELT,

Tf(z)=c-f(¢(z)) (f€S” z€D)

LRTENTES, HiZ, LOESIZT2EDDE, TIE(S || |ls) 25 (S| ||s) ~DRE 72
BRI EF TR L 5.

D EDEMBIETSH D, D EAMEICIETHEEEESkE AD) L5, AD) i

[ flloo := sup [f(2)]

zeD
RO VWL EEDLZENTE, (AD), ]| ||w) IF#FE Banach 22 TH 5. Novinger and Oberlin
22 H W,
Sy={fc HD): f € AD)}
LB Sy iTiE
1f1le = [ (O] + 11 Too

ZED I NVLEEDDREDNTE, (Sa|-||,) 13#3E Banach ZEHTH 5.

(Sa, || lo) 225 (Sa, || - |lo) ~ND, BEHEIIE LTI S 2\, 2E2EEHTEEROFICONT, I’
DGRBS NIz,
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2 Main Result

Theorem 3 T %% (Sa, || - [|o) 75 (Sa, || - |lo) ~NDRHEWEHES L L L, RDLDDHD 1 D
DETH 5.

017170172,)\1 eT & a; €D ﬁ)ﬁﬁbf
T(f)(z) =T(0)(2) + c1,1f(0) +/ ci2f'(p(C)) d¢  (Vf € Sa, Vz €D),

[0,2]
CQ’l,CQ’Q,)\Q € T t ag € D b)ﬁﬁbf
T(f)(z) =T(0)(z) + c21f(0) + / canf'(p(€))d¢ (Vf € Sa, Vz €D),

[0,2]

037170372,)\3 ceT & as € D b)ﬁxfbf

T(f)(z) = T(O)(2) + e, f(0) + / ol (PO dC (Vf € Sa, V= € D),

[0,2]

C471,C472,)\4 eT e ay € D ﬁ)ﬁ;ﬁibf

T(f)(z) =T(0)(z) + ca1f(0) + /[0 104,2f'(P(Z)) d¢ (Vf € Sy, VzeD),

ll?,p@zED,szQﬁL4KﬁbT,M@:Aﬁi_%lﬁ%é.
(ljZ
WIZ, T EDADDHD 1 DOIIZED B L, T (Sa,||-[1) 5 (Sa, || - ||o) ~O 2%
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FEL I [18] 2 A TAL .
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Bounded subsets of Smirnov and Privalov
classes on the upper half plane

Kanazawa Medical University Yasuo IIDA

Abstract. In this note, some characterizations of boundedness in N,(D) and N?(D) (1 < p <
oo) will be described, where N, (D) denote the Smirnov class and N?(D) the Privalov class on the
upper half plane D = {z € C|Imz > 0}, respectively.

1

Key words: bounded subsets, Privalov class, Smirnov class, Nevanlinna class.

1. INTRODUCTION

Let U and T denote the unit disk and the unit circle in C, respectively. The Privalov class
NP(U), 1 < p < 0, is defined as the set of all holomorphic functions f on U and satisfying

sup /T (log(1 + | £(rO)))Y dor(¢) < +oo,

0<r<1
where do denotes normalized Lebesgue measure on 7. The notion of N?(U) was introduced by
Privalov [1], and has been explored by several authors (see [2, 3, 4]). Letting p = 1, we have the

Nevanlinna class N(U). It is well-known that each function f in N(U) has the nontangential limit
(¢ = hI{l f(r¢) (a.e. ¢ € T) and that log(1 + |f|) (and hence, (log(1 + |f|))P for p > 1) is
r—1-

subharmonic if f is holomorphic. Define a metric

Ay (f ) = { [ tost1+17:0 - 0Dy da<<>}

for f,g € NP(U). With the metric dyr@)(-,-) NP(U) becomes an F-algebra [2]. Recall that an
F-algebra is a topological algebra in which the topology arises from a complete metric.

We denote the Smirnov class by N,(U), which consists of all holomorphic functions f on U such
that log(1 4 |f(2)]) < Q[9](z) (2 € U) for some ¢ € L'(T),¢ > 0, where the right side denotes
the Poisson integral of ¢ on U. It is known that, if f € N(U), f belongs to N,(U) if and only if

tim [ 1og(1+ 17r¢)) do(Q) = [ 1081+ 17O d(0).

Under the metric
v (£9) = [ 10814170 = 57D dor Q)

for f,g € N.(U), the class is also an F-algebra (see [5]).
For 0 < p < oo, the class MP(U) is defined as the set of all holomorphic functions f on U such
that

/T (log(1 + MF(Q)) do(¢) < +oo,

12010 Mathematics Subject Classification : 30H50, 46E10.
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where M f(¢) = sup |f(r¢)| is the maximal function. The class M (U) was introduced by Kim
0<r<1
in [6]. As for p > 0, the class was considered in [7, 8]. For f, g € MP(U), define a metric

dran(f.9) = { [ os1 4210 = 9O o)}
T
where oy, = min(1,p). With this metric M?(U) is also an F-algebra (see [9]).
It is well-known that HY(U) C N?(U) ¢ M (U) € N.(U) € N(U) (0 < ¢ < 400, p > 1),
where H?(U) denotes the Hardy space on U. Moreover, it is known that N(U) C M?(U) (0 <

p<1) 6]

Mochizuki [10] introduced the Nevanlinna class No(D) and the Smirnov class N.(D) on the
upper half plane D := {z € C|Imz > 0}: the class Ny(D) is the set of all holomorphic functions
f on D satisfying

sup/ log(1+ |f(z + iy)|) dz < 400
R

y>0
and N, (D) the set of all holomorphic functions f on D satisfying log(1+4|f(z)|) < P[¢](z) (2 € D)
for some ¢ € L'(R),¢ > 0, where the right side denotes the Poisson integral of ¢ on D. It is
well-known that each function f in Ny(D) has the nontangential limit f*(x) = lim flz+iy) (a.e.
y—0

z € R). Let f € No(D). Then f € N.(D) if and only if
lim | log(1+ | (x + iy)|)da :/ log(1 + |f*(x)|)da
y—0t R R

(see [10]). Moreover, under the metric

dn.oy(f+ 9) = /R log(1 + |f*(2) — g"(2)]) da,

the class N,(D) becomes an F-algebra [10].
The class MP(D) (0 < p < o0) is defined as the set of all holomorphic functions f on D such
that

/ (log(1+ M f(x)))" dz < +o0,

R

where M f(z) = sup | f(z +iy)|. The class MP(X) with p = 1 was introduced by Ganzhula in [11].
y>0

As for p > 0, Efimov and Subbotin investigated this class [12]. For f,g € M?(D), define a metric

p

duroy(9) = { [ os1+ 2117 = g)a)yas}

where o, = min(1,p). With this metric M?(D) is also an F-algebra (see [11, 12]).
In [13], the class N?(D) was introduced, analogous to N?(U); i.e., we denote by N?(D) (p > 1)
the set of all holomorphic functions f on D such that

sgg/R (log(1+ |f(z + iy)]))" dx < +oc.

Each f € NP(D) has the nontangential limit f*(z) for a.e.x € R, and under the metric

1

v (f9)={ [ Gog(1-+1°0) ~ @) o}

the class N?(D) becomes an F-algebra [13].
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A subset L of a linear topological space A is said to be bounded if for any neighborhood V' of
zero in A there exists a real number v, 0 < o < 1, such that oL = {af ; f € L} C V. Yanagihara
characterized bounded subsets of N,(U) [14]. As for M?(U) with p = 1, Kim described some
characterizations of boundedness (see [6]). For p > 1, these characterizations were considered by
Mestrovi¢ [15]. As for MP(D) with p = 1, Ganzhula investigated the properties of boundedness
[11] and Efimov characterized bounded subsets of MP?(D) in the case 0 < p < oo [16]. In recent
paper [17], the author described bounded subsets of MP(U) in the case 0 < p < 1.

The following are previous studies on characterizations of bounded subsets of function spaces

on U or D:

Previous studies on characterizations of bounded subsets of function spaces on U

NP(U) (1<p<oo) | MP(U) (0<p<1) | MYU) | MP(U) (1 <p< ) N,(U)
Subbotin lida Kim Mestrovic Yanagihara
(1999) (2017) [17] (1988) (2014) (1973)

Previous studies on characterizations of bounded subsets of function spaces on D

NP(D) (1<p<oo)| MYD) | MP(D) (0<p< ) N.(D)
Iida Ganzhula Efimov Iida
(2017) [18] (2000) (2007) (2017) [18]

2. THE RESULTS

Theorem 2.1. [18] Let p> 1. L C N?(D) is bounded if and only if
(1) there ezists a K < oo such that

/R (log(1 + |f*(x)]))" doe < K

forall f e L;
(1) for each € > 0 there exists § > 0 such that

/E(log(l I @) de <, foral fel,

for any measurable set E C R with the Lebesque measure |E| < §.

Proof. We follow [16, Theorem 1].
Necessity. Let L be a bounded subset of NP(D).
(i) For any number n > 0 there exists an a = (), 0 < a < 1, such that

21) (driofcf 0 = [ (Qos(1-+als (@) do <7
for all f € L. Utilizing the inequality (1+2)* <1l+ax (0 <a <1,z >0), it follows that, from
(2.1),

Q=

[ s+ 1@y de < [ (log(1+ alr (@l ) ds

-5 | tos1+ ol @)y ds

n\P
< (—) = K = constant
«Q
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for all f € L. Therefore, condition (i) holds.

(ii) For any number € > 0, we take n as n < 8%/2. Choose a number a = a(¢), 0 < a < 1, such
that equality (2.1) holds for all f € L. Then for any measurable set £ C R, using Minkowski’s
inequality, we have the estimate

[ o+ i@y < [ (g (2 +1701)) a

_ /E (logé +log(1 + a|f*(x)|))pdx

< ((!E| (logé)p)’l’ ([ <1og<1+a|f*<x>!>>pdac)’l’)p

1 1 P
<||E|rlog—+n] .
a

If we take 0 > 0 as 0 < /(2 (log(1/))?), then

2

1 1 p
<224 =
2 2/

for all f € L and any measurable set E C R, |E| < §. Thus condition (ii) holds.
Sufficiency.  Let conditions (i) and (ii) hold for a subset L of N?(D), p > 1. Consider a
neighborhood

/E(log(l + [ (x)])" de < (5117 logé + g—p>

V ={g € N?(D) : dyv)(g, 0) <n}.
Take € > 0 as € < n?/3. According to (ii), there exists a number ¢ > 0 such that

(2.2) /E(log(l 1 @)) da < € < %p

for all f € L and any measurable set £ C R, |E| < . Next there exists a finite constant K > 0
such that condition (i) holds for all f € L. Applying Chebyshev’s inequality to the Lebesgue
measure of the set Ey = {z € R| (log(1+ |f*(x)|))” > K/} for f € L, the following estimate is
valid:

0 .
B <5 | (os(1+ | @) do <5
R
Then we may assume E = Ey and |f*(z)| > exp(K/é)% — 1 = C in inequality (2.2), that is,

|f*(z)|/C < 1 for all x € R\Ey. Therefore, for any number o (0 < o < 1) and all f € L, we have
the following:

/R (log(1 + alf*(x)|)" dz

= [ ot valr@hyar s [ Goglt +alr @Y as

R\Ef

(2.3) < /E (log(1 + |f*(@))))" dz
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" /E (log(1 + al f*(2))))" de + / (log(1 + al f*())))" da,

where R\E; = Ey U E,, By = {z € R||f*(x)] < 1} and By = {z € R|1 < |f*(x)| < C}. By
using the elementary inequality 1+ 8t < (1+#)%% (0 <t < 1,0 < 3 < 1/2) to the second integral
in (2.3), using (2.2) and taking

i (L LN ()
a—mzn<2,2<3K> ,C<2 K 1>),

we have the following estimate

/R (log(1 + alf*(x))))" dz

<4 2ayK + "—p/ (log(1 + 1)) do
3 3K Jp,

<P (og(1 + (17 @)) da
— 3 3 3K Jgr
<nP.
Therefore, L C V and the set L is bounded in N?(D) by definition.
The proof of the theorem is complete.

0

Next we consider some characterizations of boundedness in N,(D). Proof of the following
theorem can be obtained by taking p = 1 in the whole proof of Theorem 2.1; therefore, this proof
may be omitted.

Theorem 2.2. [18] L C N.(D) is bounded if and only if
(1) there ezists a K < oo such that

/ log(1+ | /*(2)]) dz < K
R

forall f e L;
(1) for each € > 0 there exists § > 0 such that

/ log(1+ |f*(x)])dx < e, forall feL,
B

for any measurable set E C R with the Lebesque measure |E| < §.
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2-local isometries on C!

National Institute of Technology, Yonago College Hironao Koshimizu
Niigata University Takeshi Miura

For a Banach space B, a mapping T : B — B is called a 2-local isometry if for each f,g € B
there exists a surjective complex-linear isometry 7y, : B — B such that T ,(f) = T(f) and
Tr4(9) = T(g). Note that no surjectivity or linearity of 7" is assumed. In [9], Molnér studied 2-
local isometries of the Banach algebra B(H), all bounded linear operators on an infinite separable
Hilbert space H. Let Cy(X) be the Banach algebra of all complex-valued continuous functions
on a locally compact Hausdorff space X which vanish at infinity equipped with the supremum
norm || - |- If X is compact, then we write C'(X) in stead of Cy(X). In [2], Gy6ry showed that
if X is a first countable o-compact Hausdorff space, then every 2-local isometry on Cy(X) is a
surjective complex-linear isometry. In [3], Hatori, Miura, Oka and Takagi showed every 2-local
isometry on some uniform algebra is a surjective complex-linear isometry. Jiménez-Vargas and
Villegas-Vallecillos [5] considered 2-local isometries on spaces of Lipschitz functions on a bounded
separable metric space.

In [4], Hosseini investigated an extension of 2-local isometry. A mapping 7' : B — B is called
a 2-local real-linear isometry if for each f,g € B there exists a surjective real-linear isometry
Tyq : B — B such that Ty ,(f) = T(f) and Ty 4(9) = T(g). No surjectivity or linearity of 7" is
assumed. Let C™([0,1]) be the Banach space of all n-times continuously differentiable functions
on the closed unit interval [0, 1] with a norm. For example, C™ ([0, 1]) with one of the following
norms is a Banach space;

n (k)

£l = sup 3 0
NN
Il =32 M=,

1fllo = Z|fk) )+ 1™ oo

1fllm = max{\f( ) AF O PO 1™ o)
for f € C™([0,1]). Hosseini proved that every 2-local real-lienar isometry on (C™([0,1]), || - |/

is a surjective real-linear isometry, and showed that if X is a separable, first countable compact
Hausdorff space, then every 2-local real-linear isometry on C'(X) is a surjective real-linear isometry.
Note that Hosseini obtained this result applying the idea which Gy6ry used in [2].

The following theorems are our main results([7, 8]).
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Theorem 1. Every 2-local isometry on (C™([0,1]),| - |lc) is surjective complex-linear isometry.

Theorem 2. Every 2-local isometry on (CV([0,1]), ] - ||s2) is surjective complea-linear isometry.
Theorem 3. Every 2-local real-linear isometry on (CW([0,1]),|| - ||,) is surjective real-linear
1sometry.

In the proof of these theorems, the characterization of surjective complex-linear (or real-linear)
1 p—

isometries is very important. Put T={2€ C: |z| =1}, [z]' =z and [2] ! =Z.

Theorem 4 ([10]). A mapping T is a surjective complez-linear isometry on (C™([0,1]), ] - [|c)
if and only if there exist a unimodular constant X € T such that T(f)(t) = Af(t) for all f €
C™([0,1]) and t € [0,1] or T(f)(t) = Af(1 =) for all f € C™([0,1]) and t € [0,1].

Theorem 5 ([1, 11]). A mapping T is a surjective complex-linear isometry on (CV([0,1]), ]| - ||s)
if and only if there exist a unimodular constant X € T such that T(f)(t) = Af(t) for all f €
C([0,1]) and t € [0,1] or T(f)(t) = Af(1 —1t) for all f € CN([0,1]) and t € [0,1].

Theorem 6 ([6]). A mapping T is a surjective real-linear isometry on (CH([0,1]),| - |lo) if and
only if there exist €,§ € {£1}, a unimodular constant A € T, a unimodular continuous function
B :10,1] = T and a homeomorphism v : [0,1] — [0, 1] such that

T(f)(t) = AFO)] + / B(s)f ((s)))’ ds

for all f € CW([0,1]) and t € [0,1].

Problem. Is every 2-local (real-linear) isometry on C™([0,1]) a surjective complez-linear (or
real-linear) isometry?

space \ norm || ( ) o m

cm(o,1]) || OF OR

ch(o,1]) | OC|OC | Ok | OF
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Algebraric reflexivity of isometry groups of
algebras of Lipschitz maps

KH: ERE (Shiho Oi)
Niigata Prefectural Hakkai High School

This report is based on [8] (S. Oi, Algebraric reflexivity of isometry groups of algebras of Lipschitz
maps, Linear Algebra and its Applications. 566 (2019), 167-182).

1 Introduction

Let (X,d) be a compact metric space and (E,|| - ||g) a Banach space. A continuous map
F: X — FE is called a Lipschitz map if there exists a positive number L such that

|1F(x) = F(y)lle < Ld(z,y)
for every x, y € X. For any Lipschitz map F', we define Lipschitz constant L(F') by

IF@ = Pl
LE =iy

We denote by Lip(X, E') the space of all Lipschitz maps from X into E. The space Lip(X, F) is
a Banach space with respect to the max norm || -+ || ax,

| F ||l max = max{su}g |F(x)||g, L(F)}, F €Lip(X,E).
xTe

On the other hand, the space Lip(X, F) under the sum norm || - ||,

1F|lL = sup |F(z)||e+ L(F), F € Lip(X,E)
S

is a Banach space too. Moreover, if E is a Banach algebra so is Lip(X, F). For brevity, if no
confusion can arise, we write ||F||cc = sup,cx || F'(z)||z. When E = C, we denote Lip(X) instead
of Lip(X,C). Let M; be a metric space for j = 1,2. We denote the set of all map from M, into
My by M (M, Ms) and the set of all surjective linear isometry from M; onto My by Iso(My, Ms).
We introduce the definition of local in Iso(M;, Ms).

Definition 1. We say that a bounded linear operator T : My — My is a local in Iso(My, Msy) if
for any x € My, there ezists T, € Iso(My, Ms) such that



The following problem is a main problem for local surjective linear isometries.
Problem 1. If T is a local in Iso(My, M), then is T a surjective linear isometry?

Note that if every local map in Iso(M;, M) is surjective linear isometry, then we say that
Iso( M, Ms) is algebraically reflexive. Botelho and Jamison [1] considered algebraic reflexivity of
the isometry group on (Lip(X, E), || - ||max) With the additional assumption about X and E by
applying a characterization due to Jiménez-Vargas and Villegas-Vallecillos [5] of linear isometries
between Lip(X, F) under the max norm.

In the case of E = C, in [4] Jiménez-Vargas, Morales Campoy and Villegas-Vallecillos proved
that every local in Iso(Lip(X), Lip(X)) with || - |1 is a surjective linear isometry by applying [3,
Example 8]. In fact, the statement of [3, Example 8] has been open to the question. The situation
is clarified by a recent paper [2, Corollary 15], where a surjective isometry from Lip(X;) onto
Lip(X3) is proved to be of the canonical form as Jarosz and Pathak have described. Hatori and
the author [2] proved that a surjective linear isometry between Lip(X;, C(Y;)) with the norm |- ||,
is canonical in the sense that it is a weighted composition operator in [2, Corollary 14].

In addition, the author characterized unital surjective linear isometries on Lip(X, M,,(C)) with
the norm || - ||, where M, (C) is a Banach algebra of complex matrices of degree n with operator
norm in [9].

The purpose of this paper is to answer Problem 1 for the case that M; is Lip(X, E), which is
the algebra of vector-valued Lipschitz maps with respect to || - || as the norm.

2 Results

Theorem 1 ([6]). Let X; be a compact metric space for i = 1,2. The set of all surjective linear
isometries from Lip(Xy) onto Lip(Xs) is algebraically reflexive.

This theorem has been proved in [6], but we present a simple proof in [8]. We introduce the
sketch of proof as follows.

sketch of proof. Let W be a locally surjective linear isometry from Lip(X7;) onto Lip(Xs). Without
loss of generality, we may assume W(1) = 1. For any g # 0 € Lip(X), we have

U(g) = Vy(g9) = agg o @y,

where o, € C with |oy| = 1 and ¢, is a surjective isometry from X5 onto X;. There exists g € X;
such that |g(xo)| = ||g]lee. Let A € C with g(xo) = A with A # 0. We define ¢’ € Lip(X;) by
g = g+ Al. There exists ay € C with |a,| = 1 and a surjective isometry ¢, from X, onto X;
such that

V(') = agg opy = ay(g+ ) oy
=Qygopy + ag/)\17
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and

U(g) = V(g +Al)
=U(g)+ V(L) = agg o p, + Al

Thus we have
Qg g o Py + agAl =agg0p, + AL (1)

Since ¢ is surjective, there exists 1 € X5 such that ¢, (21) = 2¢. By (1) and A = g(x¢), we have
ag A+ ag A = agg(py(z1)) + A (2)
Since [|g 0 @glloo = l|lgllcc = |As gy € T, we get |g(py(z1))| = |A|. By (2) we obtain
20 = H[A] = |agg(pe(21))] = [Al.

Since A # 0, we get |2ay — 1| = 1, hence oy = 1. The equation (1) shows that

a(g9) 2 gopy(x) = aggopy(r) = V(g)(v),

for any « € Xy, where o(g) denote the spectrum of g. By the Gleason-Kahane-Zelazko theorem, we
have W is multiplicative. This implies that ¥ : Lip(X;) — Lip(X3) is an algebra homomorphism
with ¥(1) = 1. By [10, Theorem 5.1], there is a Lipschitz map ¢ : Xy — X such that

U(g)(z) = gp(r)), =€ X

for every g € Lip(X7). Since W is local map, it follows that ¢ is a surjective isometry. O]

Theorem 2 ([2]). Let X; be a compact metric space and Y; a compact Hausdorff space fori =1,2.
The map U : Lip(Xy,C(Y1)) — Lip(Xy, C(Y2)) is a surjective linear isometry if and only if
there ezists a unimodular function f € C(Y3), a continuous map ¢ : Xo X Yo — Xy such that
o(,¢) : Xo — Xy is a surjective isometry for any ¢ € Yy , and a homeomorphism 7 : Yo — Y]
which satisfys that

UF(z,¢) = f(9)F(¢(z,0),7(¢)) =€ Xs,¢€Ya.

Applying these theorems, we deduce the next theorem.

Theorem 3 ([8]). Let X; be a compact metric space and Y; a compact Hausdorff space fori = 1,2.
If the set of all surjective linear isometries from C(Y7) onto C(Ys) is algebraically reflexive, then
the set of all surjective linear isometries from Lip(Xy, C(Y1)) onto Lip(Xa, C(Y3)) is algebraically
reflexive.

It is well known that the set of all surjective linear isometries from C(Y]) onto C(Y3) is not
always algebraically reflexive. (see [7].)
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Theorem 4 ([9]). Let X; be a compact metric space for j = 1,2. Then U : Lip(X;, M,(C)) —
Lip(Xs, M,,(C)) is a linear surjective isometry such that U(1) = 1 if and only if there exists a
unitary matriz V€ M,(C), and a surjective isometry ¢ : Xo — Xy, such that

(UF)(z) = VF(p(2))V™, F € Lip(Xy, M,(C)), v € X,

(UF)(z) = VF'(p(2))V™!, F € Lip(X1, M,(C)), z € Xy,

where F'(y) denote transpose of F(y) fory € X;.

Theorem 5 ([8]). Let X; be a compact metric space for i = 1,2. The set of all unital surjective
linear isometries from Lip(Xy, M,,(C)) onto Lip(Xa, M,,(C)) is algebraically reflexive.
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2-LOCAL SURJECTIVE ISOMETRIES ON SOME SPACES OF CONTINUOUS
FUNCTIONS
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ABSTRACT. We study the group of all surjective isometries of the Banach algebra of continuously
differentiable functions from the point of view of how they are determined by their local actions.
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Let X be a linear space and L(X) the set of all linear maps on X. Suppose that () # 5 C L(X).

Definition 1. Let T € L(X). We say that T is local in S, if for every x € X there exists T, € S
which satisfies that

T(x) =T,(x).

The study of Local map dates back to the seminal work of Kadison, and Larsen and Sourour.
Motivated by an interesting extension by Kowalski and Stodkowski of the Gleason-Kahane-Zelazko
theorem, Semrl [15] initiated to study 2-local automorphisms and derivations. At the cost of
requiring the local behavior at every two points, the condition of linearity is dropped.

Let X be a non-empty set. Let M(X) be the set of all maps on X'. Suppose that ) = S C M(X).

Definition 2. Let T' € M(X). We say that T is 2-local in S if for every pair z,y € X there exists
T,, € S such that

T(l‘) = Tm,y<x)7 T(y) = Tz,y(y)'
If every 2-local map in S is in fact an element of S, we say that S is 2-local reflexive in M(X).

Molnéar [13] mentioned the problem whether the group of all surjective isometires is 2-local
reflexive or not. Even for C'(X) for a first countable compact Hausdorff space X, in particular
for C'[0,1], the problem seems not be easy. Molnér has already proved among other interesting
results that the group of all surjective isometries on B(H) for a separable Hilbert space is 2-local
reflexive [14]. In general we may consider

Problem 3. Under which condition is S 2-local reflexive in M(X)?

Instead of 72", ”Many”-local Maps can be considered: S C M(X);

e oo-local map : if for all z € X there exists T € S such that
T(x)="T(x), reX.
e 1-local map :
If S contains a surjection, then
any T € M(X) is 1-local in S!
e X =R and S = the set of all affine maps.
Even if T' € M(X) is 2-local, T need not be affine.
If T e M(X) is 3-local, then T' € S

2010 Mathematics Subject Classification. 46B04,46J10 .
Key words and phrases. isometries, 2-local isometries .
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72”7 is interesting. Some how it avoids the triviality. Molnar [12] studied 2-local complez-linear
surjective isometries of some operator algebras; S = the set of all complez-linear surjective isome-
tries on some operator algebras. Recently 2-local complex-linear surjective isometries on certain
spaces of continuous functions are studied by several authors [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12].

The difficulity of the problem of Molnéar seems to depend on the number of the parameters is
relatively large. In fact, If U : C[0,1] — C[0, 1] is a surjective isometry, then

U(f)=U(0)+afoyp, [feC01],

U(f)=U0)+afop, feC[0,1].
Hence the number of the parameter describing a surjective isometry on C10, 1] is four. We study
2-local sujective isometries on some spaces of complex-valued continuous functions on the closed
interval [0, 1]. We denote by C'*[0, 1] the Banach algebra of all continuously differentiable functions

on the closed unit interval [0, 1] with the norm || f|| = || f|leo + || f'|lco for f € C1[0,1]. The following
is proved by Miura and Takagi [10].

Theorem 4 (Miura and Takagi). Let U : C'[0,1] — C[0,1] be a surjective isometry. Then there
exists a constant o of modulus 1 such that one of the following holds.

(1) UH)E) =UO)(t) +af(t),  VfeC0,1], vt [0,1],

2) UNH)t) =U0)(t)+af(1—1t), Vfeclo,1], Vtel0,1],

(3) U(NHI(&) =U(0)() +af(t), VfeCHo,1], vtelo,1],
4) UNHt) =U0)t)+af(l1—1t), Vfelo,1], Vte[0,1].

The group of all surjective isometries on C'[0, 1] is denoted by Iso(C'[0,1]).
Theorem 5 ([5]). The group Iso(C[0,1]) is 2-local reflexive in M(C(0,1]).

Suppose that T' € M(C[0,1]) is 2-local in Iso(C*[0,1]). Put Ty = T — T'(0). By the definition
Ty is also 2-local in Iso(C[0,1]). We have the following.

Lemma 6. Ty5(C) C C, and To|c is a real-linear isometry on C.
Hence there exists a complex number « of modulus 1 such that
To(z) =az (z€C) or Ty(z) = az (z € C).
The point is to consider the set
W = {f € C'0,1] : TfU(f([0,1])) = £([0,1]) for an isometry on C,then U is the identity}.
Note that : U(z) = A+ az (2 €C) or U(z) = A+ az (2 € C). Put
P ={p+iq: pand q are polynomials of the real coeficients}.

Many polynomials such as t+it? are in T, but it is not always the case (t—1/2)3+i(t—1/2)?> ¢ W.
As is expected we have the following.

Lemma 7. P C W, the uniform closure of W. Hence W is uniformly dense in C*[0,1].

Let
0 t=0
Hy=<"
w(t) {t3sin%, 0<t<l1

For f =p+iq € P and m € N, put

g2 JwG =0+ 0 (5) +id () (=) +2Go) +ig () 0
T e) + (), o
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Then

{fm: f=p+ige W, pisnot constant and p, ¢, 1 is L.i.} C W.

Lemma 8. Suppose that Ty(z) = az (2 € C). Then

To(f)(t) = af(t) or To(f)(t) = af(1 —t) for f € W.

Suppose that To(z) = az (z € C). Then

To(f)(8) = af(t) or To(f)(t) = af (1 —t) for f e W,

Applying Lemma 8 we can deduce the number of the parameters for a 2-local map. Then we

have Theorem 5.
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