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Nevanlinna

(Yasuo IIDA)

Nenvanlinna class  Hardy Nevanlinna

factor Nevanlinna

1. Nevanlinna

U=1z2Cjjzj<1g Nevanlinna

1-1
L U=1z2Cjjzj<1g T=1z22Cjjzj=1¢g
z 2Y, B
1. sup log* jf(re'jdu < +1 f2N
o<r<l o0
f2N e = IirP f(re™) ae e*2T
reii
Z o, . Z 2 :
2. f2N sup log™ jf(re')jdu = log™ jf°(e™)jdu f2N,
o<r<1l o 0
Z 53 "o
3. p>1 sup log* jf(re™)j du<+1 f2NP
o<r<l ¢
Z 2Ys B
4, 0<qg<d sup jF(re'™jddu < +1 f2H
o<r<l ¢

N Nevanlinna class, No ~ Smirnov class, NP Privalov space, HY Hardy space
HT (NP (Na (N (p>1;0<g< 1)
N Ng; NP; HA Nevanlinna [

2. Nevanlinna

TN



2-1([RR])

N f
aB(2)F (2)S1(2)
f(z) = ———""——= (z2U)ctetet(n
@) 50 (z2U)teetee ()
factor
() a
¥ o .
(i)B@z)=z" B aniZ 5yy ¢ fang Blaschke
n=y an lianz
3 + Z ﬂ
(iii) F(z) = exp — log h(3) d%(3) N (outer function)
1
logh 2 LY(T) o T normalized Lebesgue measure
. 3+2z . .
(iv) Sj(2) =exp i 5 d1;(3) (inner function)
T 1
1,1 positive measure Y singular singular
f (0 f2N

Z Nq
2-2([RR])
Na L
f(z) =aB@2)F(2)S1(z) (z 2U)
a;B(2);F(2);S1(z) N
N 1, =0 82(2) 1
3 NP
2-3([1)
p>1 NP L

f(z) =aB@2)F(2)S1(z) (z 2U)

a;B(2);F(@);Si1(z) N log"™ h 2 LP(T)

NP




% He
2-4([RR])

0<g<d H4

f(z) =aB@2)F(2)S1(z) (z 2U)

a;B(Z2);F(@);S1(z) N h2 L4(T)
3.
5 K
Shapiro  Shields [SS] N
N No
Roberts Roberts
3-1([RD
Y
K—Zi'fZN S1(z) = ex “_Z 3-'-2(;11(3)‘IT 1T
TSy ° ~2)=exp i +3jz
continuous nonnnegative singular measure K N
Nz 2 K
® NS
Privalov N
3-2([P)
Z 5, . Z 2y :
N sup jlogjf(re™)jjdu = jlogjf(e")jjdu
o<r<1 o 0
f2N;

* inner part”




3-3((MD)

NS L

f(z)=aB@2)F(z) (z2U)

a;B(Z);F(z) N

T M
3-4([CK])

z 2Y,
u f log* MF(W) du < +1 f2M
0

MFG = sup jf(re™)

M NP Ng
HT(NP (M (Na (N (0<g<d1;p=>1)

M M
[CK]
T ® factor
a B(2) F(2) S1(2) S2(2)

N | a2 T | Blaschke logh 2 LY(T)
N. | a2 T | Blaschke logh 2 LY(T)
NP | a2 T | Blaschke logh 2 LY(T)

log* h 2 LP(T)
HY | a2 T | Blaschke logh 2 LY(T) 1

h 2 L9(T)
NS | a2 T | Blaschke logh 2 LY(T) 1 1
K | a2T | Blaschke logh 2 LY(T) *)
HZ o . il
(*) S2(z) =exp i d1(3) T continuous nonnnegative singular

T3z
measure.

4. Nevanlinna

Nenvanlinna
factor



SV il

F@) =eop % log h(3) d%(3) T
h(®)
(4 34, il
Sj(z) =exp i 3 d1;(3)
T 1Z

continuous nonnnegative singular

[CK] B.R. Choe and H.O. Kim, On the Boundary Behavior of Functions Holomorphic on the
Ball, Complex Variables, 20 (1992), 53-61.
[E] C.M. Eo®, A representation of Ng as a union of weighted Hardy spaces. Complex Variables
23 (1993), 189-199.
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24(2) (2001), 369-375.
[M] R.Mestrovif, A characterization of an subclass of the Smirnov class, Math.Montisnigri
7 (1996), 29-34.
[P] I.1. Privalov, Boundary properties of analytic functions, Moscow University Press, Moscow,
1941. (Russian)
[R] J.W. Roberts, The component of the origin in the Nevanlinna class, Ill. J. Math. 19
(1975), 553-559.
[RR] M.Rosenblum and J.Rovnyak, Topics in Hardy Classes and Univalent Functions, BirkhAuser
Verlag, Basel-Boston-Berlin, 1994.
[SS] J.H. Shapiro and A. Shields, Unusual topological properties of the Nevanlinna class, Amer.
J. Math 97 (1975), 915-936.
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1

compact Hausdor® space X X C(X)
C(X) C(X)

2"+ an; 12"+t +a, =0  (an;1;iii;a0 2 C(X))
C(X)
compact Hausdor®

Dicard-Piercy compact Hausdor®

[51,[4D).

1.1 ([3],Corollary 4.3, [6],Theorem 2.2 and [9], Theorem 3.4) compact Hausdor®
X

(1) C(X)

(2) C(X) X f:X 1C X ¥C ¢?

Il
-

(3) X dimX - 1 H1(X;Z) = 0.

compact Hausdo® X C(X)
(1) X
(2) X

3) X



Countryman, Jr.

compact Hausdor® X C(X)
C(X)

1.2 (D (11.[7D m=>0 compact Hausdor® Xm dimX, =m

C(Xm)
(2) ([2], [7]) compact Hausdor® Y HYY;2) C(Y)
3) (8D m; n compact Hausdor® Xmn C(XKmn) m

n

(4) compact Hausdor® Z C(2) Z

2 Cole Extension

Cole extension

compact Hausdor® X n X cn Map(X; C")
. Map(X;C") S R(X;n;S)
R(X;n;S) = F(X; (Za)azs) 2 X £ (C")°] az2s a(x) = za9

Y.t ROX;m;S) 1 X

l/4>S(;n(X; (Za)aZS) =X

. R(X;n;S) compact Hausdor® R(X;n;S)
Yikin :
RO S) it (CD)°
? ?
iny Y (tn)®
X it (Ccn)s
™ S a: X nBCn , a: RX;nS) & (OO

ail/llx;n = /4n ia



S n (8n)° (C™Ms S-fold product action R(X;n;S)

(%a)azs ¢ (X; (Za)azs) = (X; (%a ¢ Za)azs); (%a)azs 2 (§n)s; (X; (Za)azs) 2 R(X;n; S):
Transfer Homomorphism

2.1 n>1 S % Map(X;C") Yaxcn
R(X;n) ¥ X

(ix:n)® - H(X; Q) ¥ H(R(X;n;S); Q)

51

Xo =X
®<1, Xo+1 = R(XeiN) Pt = Yixein : Xera ¥ Xo
<L X- = limg; fXe;pe;® < ° < g ® < ,
Pe: X- ¥ Xg
S(X) X =limg; S(X) <1,
Pe - X 1 Xe
22 (1) c(X) n

X compact
Hausdor® X compact Hausdor® X X 1 X Cc(X)
1.2 compact Hausdor® X
2.1,2.2

compact Hausdor® ,

[1] N. Brodskiy, J. Dydak, A. Karasev and K. Kawamura, Root closed function algebras on
compacta of large dimensions, Proc. Amer. Math. Soc., 135 (2007), 587-596.

[2] A.Chigogidze, A. Karasev, K. Kawamura and V. Valov, On C"-algebras with the approximate
n-th root property, Australian J. Math. 72 (2005), 197-212.
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[3] R.S. Countryman, Jr., On the characterization of compact Hausdor® X for which C(X) is
algebraically closed, Paci ¢ J. Math. 20 (1967), 433-438.

[4] D. Deckard and C. Pearcy, On matrices over the ring of continuous complex valued functions
on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322-328.

[5] D. Deckard and C. Pearcy, On algebraic closure in function algebras, Proc. Amer. Math.
Soc. 15 (1964), 259-263.

[6] O. Hatori and T. Miura, On a characterization of the maximal ideal spaces of commutative
C*"-algebras in which every element is the square of another, Proc. Amer. Math. Soc. 128
(1999), 1185-1189.

[7] K. Kawamura, High dimensional compacta with algebraically closed function algebra,
preprint.

[8] K. Kawamura and T. Miura, On the root closedness of continuous function algebras,
preprint.

[9] T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically
closed commutative C"-algebras, Proc. Amer. Math. Soc. 131 (2003), 2869-2876.

(Kazuhiro Kawamura)
305-8571
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Wavelet

(Jun Tomiyama)

1

Wavelet
wavelets system (multiresolution)
Ban® center
" Operator methods in fractal analysis, wavelets and dynamical systems"

' ' wavelet
L%(R) Translation T, Dilation D)
E.Christensen and F.Dorofeev  ” ” " On p-decimal C*-algebras "
Wavelet
2 Wavelet C*-
H U H U
H unit vector »
U» = furju 2 Ug
» U wandering vector H  complete
complete wandering vector wu) U complete wandering vector
Wavelet
U H
L32(R;1) L2*(T;21) U Wavelet
T:D L?(R;2) Translation, Dilation)

THR) =Fil), DFf)(t)= p§f(2t):

10



T D wandering subspace L2[0;1] L2([i2; i1 L[12)
TD =DT?
L2(R) wavelet A(t) U
UpT =fD"ThI;n 2 Zg
Wavelet A(t)
fDO"T'A(t)g = f22A(2"t j Djl;n 2 Zg
L?(R) Haar wavelet A = A i A1y
U fD;Tg Gp1
W (Up.1) wavelet
GD;T =fD"T- J n2 Z;_ 2 Dg
D  dyadic rational number D f g
fT-_Ag A L2(R) A
A wavelet fT- Ag
U C*  C*U) W) ( Up:r
Wavelets
"W (UpT) "
C*- ka’ak = kak? Banach *-
C*  B(H)
C*-
u;v
vu = uv? (?)
universal  C*- C*(u;v)
universality H
Ui; Vi C*(u;v) H Yy
Y(u) = ug,%(v) = vy fD;Tg
C*(u;v L2(R) YW(u) = DY) =T Up:t
Gp;r W(Up;) W(Gpyr) %(C?(u;v)) L%(R)
Wavelet ' '
C*-
C*(u;v ' '
C*-
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Christensen-Dorofeev

[4].[5].[6] C*-
3 C*-
X .e. Y4
8 = (X;%) 8 C*- C?(8)
CX) X
max-norm f7(x) = F(X) C*- X
C(X) C*-
X Y4
® ®(F)(X) = F(%i1x) C(X)
C*- Morphism
®
8§ =(X;¥%) fC(X); ®g
H
® Z C(X) fC(X);®; Zg T¥%; ug Yo C(X)
B(H) *-homomorphism) u H
Y(®(F)) = u%(f)un 8f 2 C(X)
YW(f) u B(H)

C*  C?’(W(C(X));u) C7(H(C(X));u)
8 C*- Uni-

versal C*  C?(8) C’(8) 8§

C’(8) C(X) Z ®
C*-

C(X) ®f) = +f+’ ie. ® = Adu

1+

X
C’(8)=[ fit® j fc2C(X)] closed linear span
in
: £F = @K (f)£X
ft"g C(X)
? I:)n K
C(8)  C(X) E E( ".ft)="F
C*(8) Sigma positive faithful

C(X)- module property,
E(fag) = fE(a)g ;9 2 C(X)
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P
EC ", fth) =T

C*- ® (
trivial
C*-
X Cc’(8) T
t z E T Lebesgue
a(n) =E(at™) a2C’(8):n2Z
fa(n)g a
( Riemann-Lebesgue
Yoy
uv = e*Mvy
universal C*-
t v T z
C*-
von Neumann Factor
4 Christensen  Dorofeev
[ ] VH uv? C*-
z1 G %(9) = ¢
8 =(G;%) C*- C*(8)
topologically transitive n n-
topologically transitive ( dense
C*-
Wavelets fD;Tg
n .= s n _ 0; ¢
0] ¢ Viii = ,2”1
[5] 8 n
C*’(8) n Yin Yan(U) = 05 ¥n (V) =0

idea

13

Y
manifold

C*(8)

C*-

C*-

L%(R)



C*- ® = Adu ®(v?) = uviun =v
® C*-

Vo =070 = €7HWR) = R,

Cn = C?(vp) Vv Stie. T
C* C, C(T) fCng C*-
inductive limit C1 C*- ®
Gelfand-Naimark Hausdor®
G C1 =C(G) Cn C(Xn) Xn+1
Xn character Sn Va = V2,
Sn(z) = 22 Morphism (sn)

XLg Projective limit

Cai G G
G

NG G g = (zn)

Vn(%119) = ®(Vn)(9) = ®(Vn+1)?(9) = (Vn+1(%119))?

y,il Sh G Y %(9) = 9?

p vu = uvP
C*- %p(0) = ¢°
C*- p=1 vu = uv (

C’(u;v) =C(T?) =C(T) ® C(T)

L%(T) Wavelet C*-
[1]
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Japan
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Toeplitz

(Yoshimitsu Takemura)

L? Toeplitz U- , M.C. Ho S.C. Arora and R.
Batra , (121 [6D. , U-
1
X Hilbert , X Banach L(X) . T 2L(X)
© a
WT) = ,60:,IiT LX)
r(T) =sup j.j:. 2%T)
: 1 X : wT) C
© a
: 3/4|[,(T):(,20:ker(,liT)&ng . D)
L Y(T) = ZC_ker(,I i T)="T0g
' ©’ ‘ran(_]1iT)&X, ran(_1§iT)=X a
Do (T) = > 2C ker(,1§jT)=10g ran(. I iT;/F X .
n. . _
 Yiap(T) = .- 2 C:9xag % X sit. }’(‘“f;%)xnj ‘g
D %(T)= ,2C:_1iT Fredholm
yker(L1§T), ran(1§T) , g T , ,ran(L1iT)
ran(_1iT) . , .1 iT Fredholm yran(_1iT) ,
ker(L1iT) : M) Hp(T) (M) % (T)
Yap(T)  %(T) C s Yo (T) Y2 Yap(T) Y2 %(T), ¥e(T) Y2 %(T)
2 Toeplitz
T C T 1 Lebesgue .1
2 Hilbert L2(T) . n , T
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Zn

,Z"(e") =e™ (1 2 R)

a

, Fz" :n=0;81,;82;tttg

© '
LT(Mit= "2L3(T): 2L a T
C(T) ,C(Mit= ="2Cc(M:L2cCc(M
, " 2L . L2(T) M-
M-f="f (f2L%T))
M- 2 L(LX(T)) , IM-j = j"ja
2
LLAm) o
- n
W.z" =
¢ 0 (n
SJweg=1
L%(T) Toeplitz u- 2
U- =W. M-
, kU-k - kKW.KkM-k = k"k4
P
"= anzn ,U' y
n=3 1
o
¢0e a;. ¢00 ajo.+1 Q2. @j2.51 000
(¢ ap 60 a;.+1 a;. a;.;1 0C¢
tee a. oce a ag a;p  oee
tte ap. €6t a..; a. a.;1 bt
(66 as. 60 a1 ax. Az ;1 000
1 - - - IU-
, - =1 W, =1
=1 ,m =234, 000
3
L2(T) Toeplitz U- , =2
Arora and Batra (11 [6D).-
A. An=Wk(¢¢¢(W.(W.JI i J{)7¢¢¢)J h
n
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Banach

L2(T)
L*(T)

Banach

, - = 2;3;4;¢00¢

, "2 L(T) %L LYT)

1

(e
(e
(e
(e
(e

[ <Y
e

N

- - - - Toeplitz

U- = M-

, W.

r(u-)



%(U-) .3

B. "2LY(M)it , %(U-) .
@ a
C.j"j=1a.e. , WU-)= _2C:j -1 .
©
D. " 2C(T)it , WU-)= _2C:j.)-rU-) .
L2(T) M- HW(M-) , *
© a
\ "(E) "E T , Y(TrE)=0
1 " 3 ,3/4(M')
, C . , B D ,\%WU-)
" , B(U-)  w(M-) o ) , a
" 2L1(T) , %(U-) .Ho \%U-)= _2C:j,j- ru-)
A ) B D , )
3 B D 3
4
B 1
1. "2L1(Mit ,
n 1 (o) n 1 (o)
< 3 -): o o- 3 -):
22CHLs Ty B L2000 - gy ()
, C , 1 )
@ a
1l.j"j=1ae. v H(U-) = %e(U-) = Yigp(U-) = 0> 2C:j)-14
Y(U-)% _2C:jj<1:
Ifi=1ae , ¥ip(U-) : , m = 0;81;82;t¢¢,
jcj=1 , " =cz™m ,
m -jl m -jl
Y%p(U=) || T, 2C:j.j<1g[ fcg f.2C:j.j<1g
Ye(U=) || F,2C:j,j=1gr fcg f.2C:j.j=1g
ar (U-) ;
, D , \"2C(Dit" \"2cm" . C(M)it
c(m , =2C(7 ,
limsup r(Ux)
Azc(mil
kAij~“ka1 ¥O0
D 1
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2. " 2C(T) )

n o
.2C ) - limsup r(Ux) Y2 %ap(U-):
gzc(T){l
kAij~"ka ¥0
Ho [4, Theorem 4.3]  Arora and Batra [3, Theorem 4.18] ,
© a
\ "2C(T) , WU-)= _2C:j.j-rU-) "
) , 2 , 2
2. "2C(1D limsupr(Uz) = %(U-) , , " 2C(Mit ,
Azc(m{l
JAiTiairo a

©
WU-)= _2C:j.j- ru-) :

 [7]

[1] S.C. Arora and R. Batra, On generalized slant Toeplitz operators with continuous symbols, Yokohama
Math. J., 51 (2004), 1{9.

[2] S.C. Arora and R. Batra, Spectra of generalized slant Toeplitz operators, Analysis and Applications,
Allied Publ, New Delhi, 2004, 43{56.

[3] R. Batra, Generalized slant Toeplitz operators, Thesis. Univ. of Delhi. 2004.

[4] M.C. Ho, Adjoints of slant Toeplitz operators, Integral Equations Operator Theory, 29 (1997), 301{
312.

[5] M.C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J., 45 (1996), 843{862.

[6] M.C. Ho, Spectra of slant Toeplitz operators with continuous symbols, Michigan Math. J., 44 (1997),
157{166.

[7] (Y. Takemura), L? Toepitz , , 2008.
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Inner function

H?(D?)
(Michio Seto)
D? H2(D?) Clz; w]
( Banach
Clz; w] ) H2(D?)
( ) Beurling (2D
Rudin  [4]
( ) Rudin
Rudin ([5, 6, 7])
1
D=f,2C:j.j<1g D Hardy H2(D) D? Hardy H2(D?)
H?(D) H?(D?) = H¥(D) @ H*(D)
H? = H?(D?) H?2
Clz; w] (
)
1 H? M
M H? ( )
Beurling (2D
inner function inner function
2 Rudin
Rudin ®=1ini (n_1)

Mn=(@ i ®)"H2+ (z j ®,)"iItwH2 +¢t¢+w"H?

20



M, H?2

i T,
1 (Rudin [4]) M= M,

n=1
Rudin w
X _
M= ©OgH*D)ew
j=0
( ® H2=H?(D)®H?D) ® )
H |
®n iz
— n — n 1
©@ = R @)=
n=1
Y -
02 = Gi(@= b2 (G.1)
n=j
Oiiz G
Hl ( qjil:qj )
Qiiz G
Oiiz  0j
3 Inner seqguences
2 ([5, 7] (D ) inner function fgj0;_0  inner sequence
i g1 4 .1 D
Sz.-Nagy, Foias Jordan (cf. [1]
Jordan Jordan
inner sequence H?2
X _
M:=  ©gH?*D)®w:
j=0

M H?2 N=H>>M M M N

R,f =Pmzf (F2M); S,0=Pnzg (02 N):
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P« K [A;B]=AB j BA R, R,

R} Ruw S, M
S; Su S; Sw .
( Hilbert-Schmidt
) Yang ([8]) inner sequence
) P, i
2 ([5, 7]) fuj05_0  inner sequence M= ©gjH?(D) @ W

) . P, i . S0
(i) kRS RwIK3 =" ;o5 1 j j(0;=0j+1) (0)§° ;
He o. 2 — Pl - 2 I - — -2¢.
(i) KIS Swlkg = ;5oL i joj+1(0)2) "1 i j(05=05+1) (O)° ;
k ¢k, Hilbert-Schmidt

Rudin 2 _
A 1
X 4 )
KIR: RuJk; = 1i (1ini®? (Clark);
i=t % '
X ' o
K[S:;Swlks = §1+ 1i (@1ijni3?
Jj=1 n=j
Rudin R} Rw D. N. Clark
(cf. [8]) Rudin
Clark
Rudin inner
sequence
rank
M H? rank M M ( )
rank
3 (Douglas-Yang [3]) M H? (.;1) 2 D? M .=

[(Zi. M+ (Wwi1M]

dim(M=M _..) - rank M

Douglas-Yang (.;Y
M M Douglas-
Yang inner sequence
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P .
4 ([5, 6]) fgjgj o inner sequence M= 1, ,0qH?D)aw;

2 -n o-
1+7 j.1:%2()=0" (*=0);
dim(M=M ) = _ .15 )
-1 (*&0):

, Douglas-Yang

4

le

k=l

51/2 ?/45
1+sup- j_ 1: Uil y=0 - . rankM:
.2D Qj

5 ([6]) fg;9i.0 inner sequence b Blaschke factor
b, Oy 05:170;9; 4 fgj0i.0

M=, ;OGH*D)ew

6 ([5, 6]) inner sequence fq;g; o 0j non-zero Taylor
g H3D) jra 1 f0;05 0
inner sequence T0;g; o, T§0; o M, T
M W 0050 = T€i0; o

[1] H. Bercovici, Operator theory and arithmetic in H1, Mathematical Surveys and
Monographs 26, American Mathematical Society, Providence, RI, 1988.

[2] A. Beurling, On two problems concerning linear transformations in Hilbert space,
Acta Math. 81 (1949), 239{255.

[3] R. G. Douglas and R. Yang, Operator theory in the Hardy space over the bidisk (1),
Integr. equ. oper. theory 38 (2000), 207{221.
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Riemann Royden's resolution
simultaneous analytic continuation

Mikihiro HAYASHI, Hokkaido University

( Nov. 26(Mon){27(Thu), 2007, )

1 Introduction

Let A an algebra of analytic (or meromorphic) funcions on a Riemann surface
R. We always assume that A contains a nonconstant function. In the fol-
lowing argument, we may assume without loss of generality that A contains
the constant functions because the quotient eld of A contains the constants,
¢ = (cf)=F. The algebra A will be called weakly separating on R if for any
distinct pair of points p;q in R there exists a pair of nonconstant functions
f; g in A such that (f=g)(p) & (f=g)(q). The base Riemann surface R will
be called maximal for A if there are no Riemann surfaces R’ such that R’
contain R as a proper subdomain in the sense of conformally equivalence and
such that every element in A has an analytic (resp. meromorphic) extension
to R’

1 De nition Let R a Riemann surface and A an algebra of analytic (resp.
meromorphic) funcions on R. We will call (A; R) the Royden's resolution
of (A; R) if the following properties are satis ed:

(a) there is an analytic mapping * from R to R such that A =ff+*;T 2
Ag; if this is the case, the correspondence ¥ ¥ £+ " is one-to-one
algebraic isomorphism from A onto A.

(b) Ais weakly separating on R.
(¢) R is a maximal Riemann surface for A.

2 Theorem (Royden[2], 1965) Let A an algebra of analytic (or meromor-
phic) funcions on a Riemann surface R such that A contains a nonconstant
function. Then, there exists a Royden's resolution (A;R) of (A;R). More-
over, such a Riemann surface R is uniquely determined by (A; R) (up to the
conformal equivalence).
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Here we brie®y sketch his proof. He started from an algebra A. A rep-
resentation % of A on a (not neccessarily connected) Riemann surface R is
an algebra homomorphism % : f ¥ £ of A onto a subalgebra A* of analytic
(or meromorphic) functions on R such that for each connected component
of R there is a nonconstant f* for some f 2 A. Two etreme cases, ‘local'
and ‘global' representations, are of special importance. The global one will
be constructed at the end. A local representation (%;p;R) is a germ of a
representation % at point p; that is, At a point p in R, we consider all repre-
sentations £ ¥ f%j,, where U runs all neighborhoods of p. A representaion
% of A on R is said to be primitive at a point p in R if for some f;g 2 A,
f%=g" has a simple zero at point p. Two primitive local representaions % at
p2Rand ratq2W are said to be equivalent if there is a conformal map-
ping = of a neighborhood of p onto a neighborhood of g such that *(p) = q
and f* = %+ ™. Then, one can see the followings:

(i) If f%=g” is one-to-one on R, then the representaion ¥% is primitive at
any points in R. In particular, if a representation % is primitive at
point p, then it is primitive at any points in a neighborhood of p.

(i) If (% p;R) is a local representation, then there is a primitive local
representation (%;q; W) such that there is an analyitc mapping A of
a neighborhood of p onto a neighborhood of g such that A(p) = q and
% = f%+A. It is worthwhile to note that one can expressw = A(z) = zK
for suitably choosen coordinates z about p and w about g satisfying

z(p) = w(q) = 0.

(iii) Two primitive local representaions % at p 2 R and %2 at @ 2 W are
not equivalent if and only if there are elements f;g in A such that

(F*=g")(p) & (F*=g")(a).

Now, let RepA, the ‘global’ representation of A, be the set of all equivalent
classes [(%; p; R)] of primitive local representations of A. By (i), RepA has
a structure of a (not neccessarily connected) Riemann surface. For each
f 2 A, de ne a function T on RepA by F([(%; p; R)]) = f%(p), which is well-
de ned. By (ii), the totallity A of fis weakly separating on R. By (iii), any
representation % of A on R induces a natural analytic mapping " of R into
RepA such that £ = '+ *, which shows the maximality of R for A.

When one starts from an algebra A of analytic (or meromorphic) func-
tions on a connected Riemann surface R, letting R be the connected compo-
nent containing " (R), one obtains the Royden's resolution (A;R) of (A; R).

In what follows we need the following fact, which is essentially shown in
the Royden's argument.
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3 Lemma Let A be an algebra of analytic (or meromorphic) functions on a
(not necessarily connected) Riemann surface. Then, A is weakly separating
on R if and only if A is separating on R except a countable number of points.

The next example shows that the Royden’s resolution can be understand-
able as a kind of analytic continuation:

4 Example Let T be a nonconstant meromorphic on a plane domain D
and A the algebra generated by two functions f(z) and z. Let R¢ be the
rami ed Riemann surface associated with the analytic continuation f of f.
Then, the Royden's resolution of (A;D) is given by (A;R¢), where A is
the algebra generated by two function T and the natural projection % of R¢
into the Riemann sphere €; the associated analytic mapping " is the inverse
mapping %i! from D onto the sheet in R¢ over D on which = f + 4.

Proof: It suzxces to see the weakly separateness. Let p;q 2 R¢; p & q. We
are done if %(p) & Y%(q). Suppose %(p) = %(q)(= a). Let z be the standard
coordinate on €. We may choose local coordinates 3 about p and » about
g such that z = %(3) = a+ 3™ and z = %(») = a+ »", where positive
integers m; n denote multiplicities of brach points. Take neighborhoods U
of a, V of pand W of g so that U = %(V) = %(W). Incase m =n = 1,
the sutuation is simple. Since f+ (%jV)i! and =+ (%jW)i! are two di®erent
analytic continuations of f, £+ (%jV)i! j £+ (%jW)i! is nonconstant on U
and may have at most a nite number of zeros in U. Therefore, two functions
T and % separate the points of the set U [W execpt a nite number of points,
and hence, A is weakly separating on V [ W by the above lemma. In the
general case, two functions ¥ and % separate the points of the set U [ W
execpt a nite number of points because

F@) = 11-k<i-men(FPQ) 1 F(p3))°

is a nonconstant meromorphic function of z 2 Unfag, where (%jV [W)il(z) =

above lemma. This shows that A is weakly separating on R¢. Now let R? be
a connected Riemann surface such that there is an weakly separating algebra
A of meromorphic functions on R’ and a conformal mapping *° of D onto a
subdomain D’ of R? satisfying A’+ "' = A. Then, there exist functions ¢, and
g in A’ with ; + "' = identity and g+ *" = f. We may regard ; : R" ¥ ;(R")
a (branched) covering map. Fixing a point & in D’ with d;(a") & 0, set
a=¢(@"). Then, a2 D and & is a non branch point of ;. Let b’ be any non
branch point in R'. Choose a neighborhood V" of b’ such that ¢ is one-to-one
on V% SetV = ¢ (VY. Then, g+ (¢jv") it is an analytic continuation of f.
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This is easy to see. In fact, if we take an curve °’ starting from the point a’ to
the point b? on R? such that d; & 0 on °', then we see that g+ (;jV?)i!is an
analytic continuation of f along the curve © = ;(°"). If b’ is a branch point
of ¢, we have only to take the curve ° starting from the point &’ to the point
b’ on R’ so that d; & 0 on °’n fb'yg. With this argument, we see that there
is an analytic mapping psi of R to R¢ such that F+A =gand % +A = ¢,
and hence, A+ A = A". Since A’ is weakly separating, A is one-to-one. This
also show that the maximailty of R¢ for A. This completes the proof.

5 Remark In the preceding example, the role of the coordinate function
z is crucial. In fact, if A is the algebra generated by a single nonconstant
analytic (or meromorphic) function ¥ on an arbitray Riemann surface R.
Then, the Royden’s resolution of (A; R) is just the whole complex plane C
(resp., the Riemann sphere €) and the algebra A of all polynomials, where
the associated analytic mapping from R to C (or €) is given by * = f.

Our main purpose is to note that the Royden's resolutions can be con-
structed in the following way.

6 Theorem Let A an algebra of analytic (or meromorphic) funcions on a
Riemann surface R such that A contains a nonconstant function. Let h be
an nonconstant function in A and V be any subdomain of R such that h is
one-to-oneonV. Let F = ff+(hjV)i!; f 2 Ag and Rg the Riemann surface
obtained by the simultanious analytic continuations F of F. Then, (F;Rg)
gives the Royden's resolution of (A; R).

Here, the simultanious analytic continuations are de ned as follows.
Let F be a family of analytic (or meromorphic) funcions on a subdomain
U of €. Let V be another subdomain which intersets with U. If every
function f in F has the analytic continuation fV to V, then we say that
FV = ffV;f 2 Fg ise the direct simultaneous analytic continuation of
F. If a family FY is obtained by repeating direct simultaneous analytic
continuations ~nitely many times from F, we say that FYW ise the indirect
simultaneous analytic continuation of F. Here, one should note that the
correspondence f ¥ W is also important. Namely, even if W = W? and
FW = FW’ as sets, we consider two simultanued analytic continuations FW
and FY’ to be di®erent whenever those correspondences are di®erent. Fol-
lowing the classical way, we can de ne a simultaneous analytic continuation
along a curve and a simultaneous analytic continuation at a branch point.
(The use of function elements is incovienent for a simultaneous analytic con-
tinuation, because the radii of convergence of function elements may have
the least bound zero. We need a xed domain W on which every function is
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de ned.) The simultaneous analytic continuations F of F is de ned by the
totality of indirect simultaneous continuations of F.

Now, the proof of Theorem 6 can be done in a similar way as Example 4,
and will be omitted.

7 Remark When one consider the analytic continuation of an analytic func-
tion in Example 4, one should be careful; we need to consider it rst as mero-
morphic function and restrict to the domain where f is analytic, because
may have analytic continuations at z = 1, where z has a pole. On the
other hand, such a conderation is no need as for Theorem 6. This is because
Theorem 6 is a gerenalization of Remark 5.

Finally, we should remark on the main result of his paper [2]. He proves
that the Royden’s resolution R is A-convex; namely, if K is a compact set,
then every scalar-valued nonzero algebra homomorphism of the uniform clo-
sure of AjK on K is given by a point evaluation of a certain compact subset
K of R. This result is also proved by Bishop [1].

It is an interesting problem to generalize this result to a higher dimen-
sional resolution. >From our present observation, we can easily generalize a
higher dimensional resolution as far as we restrict our consideration to the
smooth part of the resolution. The dixculty arises when one treats the sin-
gular part of the resolution, which is required in order to obtain A-convexity
of the resolution.
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Norms and essential norms of weighted
composition operators beiiween the Bloch space
to H

(Takuya Hosokawa)

1 Introduction

Let H(D) be the set of all analytic functions on the open unit disk D and S(D) the set of
all analytic self-maps of D. Every analytic self-map * 2 S(D) induces a composition operator
C-:f A £z~ and every analytic function u 2 H(D) induces a multiplication operator M, : T A
ut¢f. Both C- and M, are linear transformations from H(D) to itself. The weighted composition
operator uC- is the product of M, and C-, that is, uC-f = MC-f =utf+".

Let HT = H1(D) be the set of all bounded analytic functions on D. H? is the Banach algebra
with the supremum norm

kfkq =supjf(2)j:

z2D
The Bloch space B is the set of all f 2 H(D) satisfying

ifi= Stzlg(l i jzj)if'(2)j < 1:

Then j ¢ j de nes a MAbius invariant complete semi-norm and B is a Banach space under the
norm kfkg = jf(0)j + jfj. Note that jfj - kfk, forany f 2 H1, hence H1 % B. Let the little
Bloch space B, denote the subspace of B consisting of those functions  such that

lim (1 § jzj)f'(z) = 0:
jzj 11

The little Bloch space B, is a closed subspace of B. In particular, B, is the closure in B of the
polynomials.
Let w be a point in D and ®,, be the MAbius transformation of D de ned by
Wiz

®u(2) = 1ij Wz

For w; z in D, the pseudo-hyperbolic distance %(w; z) between z and w is given by
D 7Y — i L _ E Wiz
5 2) = 18u(2)] = 7
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and the hyperbolic metric  (w; z) is given by
_ 1 1+ %(w; z)
;2) = —log ————:
(w;z) 2 %97 i b(w;2)
It is known that the hyperbolic metric coincides with the induced distance on the Bloch space,
that is,
sup jf(z) i F(w)j="(z;w): (1.1)

kfkg -1
From this equation, we have the following growth condition on the Bloch functions; for f 2 B,
1+jwj,
1ijwj

(1.2)

. R |
ifw)j - Jf(0)J+lfl7 log

See [6] for more information on the Bloch space.

Let X and Y be two Banach spaces and T be a linear operator from X to Y. Let kTkx sy
denote the operator norm of T. Moreover, let denote kTkyx = kTkx sx. For a bounded linear
operator T from X to Y, the essential norm KT ke.x sy is de ned to be the distance from T to the
closed ideal of compact operators, that is,

KTke:x sy = InfFKT + Kkx sy : K is compact from X to Y g:

Notice that T is compact from X to Y if and only if kTke.xsy = 0. Let denote kTke.x =
KT Ke: x 1 x-

In this paper, we estimate the operator norm and the essential norm of uC- acting between B
and H1. We give the exact estimation of the operator norm of uC- from B to HY in Section 2,
and of the essential norm in section 3. Here we introduce some related results. Ohno characterized
the boundedness and the compactness of uC- from B to H™.

Theorem A. (Ohno, [3] and [5]) Let u be in H(D) and * be in S(D).

(i) The weighted composition operator uC- : B ¥ H? is bounded if and only if u2 H* and

e
sup ju(2)jlog ———— <1
on ! (@)log 7 i7"
(ii) Suppose that uC- : B ¥ H? is bounded. Then uC- : B ¥ H? is compact if and only if
u2H?* and .
limsup ju(z)jlog ————~— =0:
j'(Z)j!EJ @) 91 i17(2)]

In [4], Kwon also studied the composition operators from B to H1 and gave the estimation of the
operator norm of C- induced by " with a ~xed point at the origin from B° to H1, where B° is
the subspace of B which consists of all Bloch functions f with £(0) = 0.

Theorem B. (Kwon, [4]) For any " 2 S(D) such that "(0) = 0, we have that

1 1+j%(2)j
kC-k = —suplog ——=:
BT e V1 @)
The main results of this paper give the complete estimation of the operator norm and essential
norm of uC- from B to H1, which are the generalization of these results above.
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2 The operator norm of uC- from B to H%

In this section, we estimate the operator norm of uC- from B to HL.

Theorem 2.1 Let u be in H1(D) and " be in S(D). Then yve have the followmg; estimation:
81
1+J (2)]
kuC-kgspy1r = kuC-kg, syxr =sup ju(z)jtmax 1;— Iog
22D 2 1"@)i
Considering the case that u = 1, we obtain the estimation of KC-kg s 2.

Corollary 2.2 Let " be in S(D). Suppose that k"k; < 1. Then the operator norm of C- is
estimated as s

< 1 if k"kq - 5il

e2+1

| 1+k"ka e?jl - .
2 log Tik"ka if rEs k"kp <1

kC'kB!Hl = kC'kBO!Hl =

Remark 2.3 (i) If uC- is bounded from B to H1 and j"(z)j ¥ 1asz ¥ 3 2 @D, then the radial
limit of u must vanish at 3. Thus we can conclude that if u is not the zero function and * has the
radial limits of modulus 1 on a set of positive measure, then uC- is never bounded.

(i) More especially, considering the case that "(z) = z, it follows that that the multiplication
operator M, is bounded from B to H? if and only if u is the zero function. Then we can conclude
that the compactness of My, is equivalent to the boundedness of M,.

3 The essential norm of uC- from B to H1

In this section, we estimate the essential norm of uC- from B to H%. To do this, we prepare
the two lemmas.

Lemma 3.1 Let u be in H(D) and " be in S(D). Suppose that uC- is bounded from B to HL.
Then uC- is compact from B to H* if and only if kuC-f.,k4 ¥ 0 for any bounded sequence ff,.g
in B that converges to 0 uniformly on every compact subset of D.

The lemma above is one of the generalization of well known results called the Weak Convergence
Lemma and we omit its proof (see Proposition 3.11. of [1]).
Here we give the estimation of the essential norm of uC-.

Theorem 3.2 Let u be in HY(D) and " be in S(D). Suppose that uC- is bounded from B to
H® (then uC- is also bounded from B, to H1). Then we have the following estimation:

kUC'ke;B!Hl = kuC- keBOIHl

1+ (2)]
= limsupju(z)j =lo ﬁ:
J(Z)J'EJ ()J Tii i

where we de ne the limit supremum above is equal to 0 if k"kq < 1.

Recall that uC- is compact from H? to itself if and only if ju(z)j = 0 whenever j"(z)j ¥ 1.
Hence it follows that C- is compact from H? to itself if and only if k"k3 < 1. For the composition
operator, combining Corollary 2.2, we have the following.
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Corollary 3.3 Let " be in S(D). Then the following are equivalent:
(i) C- is bounded from B to H™.
(ii) C- is bounded from B, to H.

(iii) C- is compact from B to H.

(iv) C- is compact from B, to HL.
(v) C- is compact from Ht to HL.

(vi) k"kq < 1.

At last, we give an example which indicates the di®erence between the boundedness and compact-
ness of uC- from B to HL.

H ﬂil H

ﬂil
Example 3.4 Put "(z) = (1+2)=2, u(z) = 1i 2, v(z) = Iog% ,andw(z) = loglog
1

ee
ljz
Then (1) =1and j°(z)] <1 for z & 1. Since these three weight functions tend to 0 asz ¥ 1,
uC-, vC-, and wC- are compact from H* to H1. By Theorem 2.1 and Theorem 3.2, it follows
that uC- is compact, vC- is bounded but is not compact, and wC- is not bounded from B to H?.
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Bargmann-Fock

(Sei-Ichiro Ueki)

cN H(CN) . Bargmann-Fock FB(l-p<d;®>0)
Y% Z Ya
FP= f2H(ECY): jf@jPei 7@ dv(z) <1
3 -~ Z S
N . L @i 2
kfkP = — if(@)jPet Z¥7dV (2):
21/4 CN
Bargmann-Fock Banach p=2 , Functional Hilbert
. Bargmann-Fock [2] .
, B. Carswell, B.
MacCluer, A. Schuster[1] F§ .
, F§ symbol * *(z) =Az+B
A  kAk -1 N ,B NEI1
kAk <1 , Bargmann-Fock
Hardy Bergman
,p=2 Hilbert F2
Fock (I3, 4D). [3]
, Carswell, MacCluer, Schuster
, [3] Banach FS
Fg
u2 H(CN), = =("1;:::5"n) (7 2 H(CY))
a -~ 7
N =(2)wi - 3 P2 (iwi2+izi2
BE(u)(w) = @ ju(z)jPereRren” @wigi B Gwi+izi®) gy (2)
2% cN
BE(u) ,p=2 (uC-)*(uC-) Berezin
BE(u)
(B 1-p<1
uC- :F5 ¥ F§ O BP(u) 2 L1(CN):
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kuC-K,

(5D 1<p<1l . F8 uC- ,
lim sup B2 (u)(w) - kuC-K? - C limsup BE(u)(w)
wjra jwjra
,uC- tF§ ¥ F§ . I_im1 BE(u)(w) =0
jwj 1
q
N =1 0<" <8, .= 27 %
u(z) = expf” z°g; "(z2) = 52+ 1:
y UC' . 1
N he o
BE(u)(w) - Cexp iT(jo i 2)?+p® ¥ 0 as jwjro
, uC- FJ§
l<p<ad : Fo
. yp=1
, p=1 Bi(u)(w) ¥ 0 (jwj ¥ 1) . ,
Carswell, MacCluer, Schuster [1] uC- F$
uC- :F3 ¥ F3 O im Bi(uyw)=0 ?
jwj 1
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Riesz
. Alexandro®

(Jun Kawabe)

1 Introduction

A classical theorem of A.D. Alexandro® [1] states that every nitely additive, regular measure
on a eld of subsets of a compact Hausdor® space is countably additive. This result was extended
in Rieecan [19] and Hrachovina [5] for Riesz space-valued compact measures and in Volauf [22]
for lattice group-valued compact measures. The counterpart of the Alexandro® theorem in non-
additive measure theory can be found in Wu and Ha [25, Theorem 3.2], which asserts that every
uniformly autocontinuous, Radon non-additive measure on a complete separable metric space is
continuous from above and below (unfortunately, Theorem 2.1 of [25] was proved incorrectly;
see [26]). The purpose of the paper is to give successful analogues of those results for Riesz
space-valued non-additive measures.

The "-argument, which is useful in calculus, does not work in a general Riesz space. Recently
it has been recognized that, instead of the "-argument, certain smoothness conditions, such as
the weak ¥%-distributivity, the Egoro® property, the asymptotic Egoro® property, and the multiple
Egoro® property, should be imposed on a Riesz space to succeed in extending fundamental and
important theorems in additive or non-additive measure theory to the framework of Riesz spaces;
see, for instance, [6, 7, 8, 9], Riecan and Neubrunn [20], Wright [24], and the references therein.
In this paper, with the help of those smoothness conditions, it is reported that the Alexandro®
theorem for a compact non-additive measure with values in a Riesz space is still valid for the
following two cases: one is the case that the measure is autocontinuous and the Riesz space has
the weak asymptotic Egoro® property and the other is the case that the measure is uniformly
autocontinuous and the Riesz space is weakly %-distributive. These will be appeared in Section 3.

Some de nitions of smoothness conditions on a Riesz space and those of Riesz space-valued
non-additive measures are collected in Section 2. In Section 4 it is reported that every weakly
null-additive, Riesz space-valued fuzzy measure on a complete or locally compact, separable metric
space is Radon, provided that the Riesz space has the multiple Egoro® property. A close connection
between regularity and continuity of non-additive measures is also given. See the original paper [10]
for the proofs of the results.
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2 Preliminaries

It is always assumed that V is a Riesz space, and the standard terminology of the theory of
Riesz spaces [14] will be used. Denote by R and N the set of all real numbers and the set of all
natural numbers respectively.

2.1 Smoothness conditions on a Riesz space

Denote by £ the set of all mappings from N into N which is ordered and directed upwards by
pointwise partial ordering, that is, yu; - H, is de ned by (i) - po(i) for all i 2 N. A double
sequence fri;jgi.j)2n2 Of elements of V is called a regulator in V if it is order bounded and it holds
that r;; # 0 for each i 2 N, that is, rij _ rij+1 for each i;j 2 N and infjoyri; = 0 for each
1 2 N. We say that a Riesz space V has the Egoro® property if, for any regulator r;;Qi.j)anz
in V, there is a sequence fp,gwon Of elements of V. with py # 0 such that, for each (k;i) 2 N2,
one can nd j(k;i) 2 N satisfying riju.iy - P« [14, Chapter 10]. A Dedekind %-complete Riesz
space V is said to be weakly ¥%-distributive if, for any regulator fr;;g:.j2n2 in V, it holds that
infuoe SUP;oN Mgy = 0 [24].

The following smoothness conditions are introduced and imposed on a Riesz space to show that
some fundamental theorems in non-additive measure theory remain valid for Riesz space-valued
non-additive measures [7, 8, 9].

De nition 1 Letu2 V™. For each m 2 N, consider a multiple sequence

u™ = funl;:::;nmg(nl;:::;nm)ZNm

of elements of V.

1. A sequence fu(™g.,on Of the multiple sequences is called a u-multiple regulator in V if, for

each m2 N and (ny;:::;ny) 2 N™, the multiple sequence u™ satis es the following two
conditions:
(Ml) 0 = Unl = Unl;nz = ¢¢¢ = Unl;:::;nm = U

(M2) Lettingn ¥ A, then u, #0, Un;:n # Unys it and Unyonen # Ungong, -

of elements of V.
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1. We say that V has the multiple Egoro® property if, for each u 2 V * and each strict u-multiple
regulator fu™g.,.y, the following two conditions hold:

(1) uy :=sup Uy 1y m) exists for each u 2 £.
M m2N Yu(1);::5p(m)

(if) There is a sequence . gkon Of elements of £ such that uy, ¥ 0.

2. We say that V has the asymptotic Egoro® property (respectively, the weak asymptotic Egoro®
property) if, for each u 2 V* and each u-multiple regulator (respectively, strict u-multiple
regulator) fu(™gon, the following two conditions hold:

(M) u, :=sup Uy (1):-uemy EXIStS for each u 2 £.
i m2N Yu(2);:5u(m)

(ii) inf oz u, = 0.

Many important function spaces and sequence spaces enjoy our smoothness conditions; see [7,
8, 9.

2.2 Riesz space-valued non-additive measures

Throughout this paper, we assume that (X; F) is a measurable space, that is, F is a %- eld of
subsets of a non-empty set X.

De nition 3 Asetfunction®: F ¥ V iscalled a non-additive measure if it satis es the following
two conditions:

(i) *G)=0.

(i) *(A) - 1(B) whenever A;B 2 F and A % B (monotonicity).

The following terminology will be used without any further reference [2, 11, 16, 23].
De nition 4 Let1:F ¥ V be a non-additive measure.

1. 1 is said to be continuous from above if 1(Ay) # 1(A) whenever TAgnon 2 F and A2 F
satisfy A, # A.

2. 1 is said to be continuous from below if 2(A,) "™ 2(A) whenever fA,gnon 2 F and A 2 F
satisfy A, " A.

3. L is called a fuzzy measure if it is continuous from above and below.

4. 1 is said to be order continuous if it is continuous from above at the empty set, that is,
1(A,) #0 for each TALgnon 2 F with A, # ;.

5. 1 is said to be strongly order continuous if it is continuous from above at sets of measure
zero, that is, 2(An) # 0 for each fALgn2on 2 F and A 2 F with A, # A and 1(A) = 0.
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11.

12.

13.

14.

1 js said to be subadditive if 1(A[B) - 1(A)+2(B) forall A;B 2 F.
1 js said to be null-additive if (A [ B) = 2(A) whenever A;B 2 F and 2(B) = 0.
1 is said to be weakly null-additive if L(A[ B) = 0 whenever A;B 2 F and 2(A) = 1(B) = 0.

1 js said to be autocontinuous from above if *(A [ B,) ¥ 2(A) for each A 2 F and
fBngnon 2 F with 1(B,) ¥ 0.

1 js said to be autocontinuous from below if (A j B,) ¥ 2(A) for each A 2 F and
fBngnon 2 F with 1(B,) ¥ 0.

1 js said to be autocontinuous if it is autocontinuous from above and below.

1 js said to be uniformly autocontinuous from above if, for any sequence fB,gnon Y2 F with
1(B,) ¥ 0, there is a sequence fpngnan Y2V with p, # 0 such that (A [ Bn) - (A) + pn
forall A2 F and n 2 N.

1 js said to be uniformly autocontinuous from below if, for any sequence B,gnon %2 F with
1(B,) ¥ 0, there is a sequence fpngnan ¥2 V with p, # 0 such that 2(A) - (A § Bn) +pn
forall A2 F and n 2 N.

1 is said to be uniformly autocontinuous if it is uniformly autocontinuous from above and
below.

Iéa non-additive mgsure 1 : F ¥ V is order countably additive, that is, it holds that
1( nlzlAn) = SUPon kg T(AK) Whenever FAngnon is @ sequence of pairwise disjoint sets of
F, then 2 satis es all the properties of the above de nition.

The following proposition can be easily proved from De nition 4 and the proofs in the real-valued
case; see [2, 11, 16, 23] for more information on real-valued non-additive measures.

Proposition 1 Let : F ¥ V be a non-additive measure.

(1) The following implications hold: subadditivity ) uniform autocontinuity ) autocontinuity

) null-additivity ) weak null-additivity.

(2) If there is an element u 2 V with u > 0 such that 2(A) _ u for all non-empty set A 2 F,

then 1 is autocontinuous.

(3) If L is order continuous and autocontinuous from above (respectively, from below), then it is

continuous from above (respectively, from below).

(4) The following implications hold: continuity from above ) strong order continuity ) order

continuity. Further, if T is null-additive and order continuous, then it is strongly order
continuous.
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3 The Alexandro® theorem

In this section, we give successful analogues of the Alexandro® theorem [1, Theorem 5, Chap-
ter 3, x9] for compact, Riesz space-valued non-additive measures.

De nition 5 Let 2 :F ¥ V be a non-additive measure.

1. A non-empty famil;i_K of subsets of X is called a compai:t system if, for any sequence
fKngnan Y2 K with = K, = ;, there is ng 2 N such that ", K, = ; [15].

n=1"1™N

2. We say that 1 is compact if there is a compact system K such that, for each A 2 F, there
are sequences TK,gnan %2 K and fBhgn2n Y2 F such that B, %2 K, Y2 A for all n 2 N and
1(AjBy o0

Remark 1 (1) The family of all compact subsets of a Hausdor® space is a compact system.

(2) The family of all nite unions of sets in a compact system is also compact [18, Lemma 1.4].
Therefore, in (2) of the above de nition, the compact system K and the sequences fK,gn2n and
B,gnon may be chosen so that K is closed for nite unions and fK,,gon and B,,gnon are both
increasing.

(3) Our de nition of the compactness of 1 is stronger than that of [5, De nition 1]. In fact,
they coincide if V is a Dedekind %-complete, weakly %-distributive, order separable Riesz space.

Theorem 1 Let 2 : F ¥ V Dbe a non-additive measure. Assume that V has the weak asymptotic
Egoro® property. If 1 is compact and autocontinuous, then it is continuous from above and below.

The following theorem asserts that the Alexandro® theorem is also valid for any compact and
uniformly autocontinuous, Riesz space-valued non-additive measure when the Riesz space is weakly
Ya-distributive.

Theorem 2 (cf. [5, 19]) Let V be Dedekind %-complete and * : F ¥ V a non-additive measure.
Assume that V is weakly %-distributive. If * is compact and uniformly autocontinuous, then it is
continuous from above and below.

4 Radon non-additive measures

In this section, we give some properties of Radon non-additive measures and establish a close
connection to their continuity. Let S be a Hausdor® space. Denote by B(S) the %- eld of all Borel
subsets of S, that is, the %- eld generated by the open subsets of S. A non-additive measure
de ned on B(S) is called a Borel non-additive measure on S.

De nition 6 Let 1 be a V -valued Borel non-additive measure on S.

1. 1 js said to be regular if, for each A 2 B(S), there are sequences fF,gn2n Of closed sets and
TGhgnon Of open sets such that F, 2 A% G, foralln2Nand 2(G, jF,) ¥ 0asn ¥ 1.
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2. 1 is said to be Radon if, for each A 2 B(S), there are sequences fK,gnon Of compact sets
and fGLgnon Of open sets such that K, Y2 A% G, foralln2 N and (G, § K,) ¥ 0 as
nt 1.

3. 1 is said to be tight if there is a sequence TK,gnon Of compact sets such that 2(S § K,) ¥ 0
asn ¥ 1.

Remark 2 Sequences of sets in the above de nition may be chosen so that fG,,g,.»y is decreasing,
while fF,gn2n and FK,gnon are increasing.

Proposition 2 Let S be a Hausdor® space. Let T be a V -valued Borel non-additive measure on
S which is weakly null-additive and strongly order continuous. Then, the following two conditions
are equivalent:

() *is Radon.
(i) * is regular and tight.

Remark 3 Proposition 2 remains valid for every V-valued Borel non-additive measure on S
satisfying a weaker condition that (A, [ B,) ¥ 0 for any decreasing sequences TA,gnon and
fBhgnon Of sets of F with 2(A,) ¥ 0 and 2(B,) ¥ 0. This condition is slightly weaker than the
pseudometric generating property which was introduced in [3].

Since the family of all compact subsets of a Hausdor® space is a compact system, the com-
pactness of a non-additive measure follows from its Radonness. Thus, by Theorems 1 and 2 we
have

Theorem 3 Let S be a Hausdor® space. Let * bhe a V -valued Borel non-additive measure on S.

(1) Assume that V has the weak asymptotic Egoro® property. If T is Radon and autocontinuous,
then % is continuous from above and below.

(2) Assume that V is Dedekind %-complete and weakly %-distributive. If  is Radon and uni-
formly autocontinuous, then 1 is continuous from above and below.

Recall that a fuzzy measure is a non-additive measure which is continuous from above and
below. Recently, Li and Yasuda [12, Theorem 1] proved that every weakly null-additive, real-
valued fuzzy measure on a metric space is regular. The following is its Riesz space version and
has been proved in [9, Theorem 2]

Theorem 4 Let S be a metric space. Assume that V has the multiple Egoro® property. Then,
every weakly null-additive, V -valued fuzzy Borel measure on S is regular.
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It is known that every nite Borel measure on a complete or locally compact, separable metric
space is Radon; see [17, Theorem 3.2] and [21, Theorems 6 and 9, Chapter Il, Part I]. Its counter-
part in non-additive measure theory can be found in [13, Theorem 1 and Lemma 2], which states
that every Borel fuzzy measure on a complete separable metric space is tight, so that it is Radon if
it is null-additive; see also [25, Theorem 2.3]. The following two theorems contain those previous
results; see also [6, Theorem 12].

Theorem 5 Let S be a complete separable metric space. Assume that V has the multiple Egoro®
property. Then, every V -valued fuzzy Borel measure on S is tight, so that it is Radon if it is
weakly null-additive.

To prove the theorem, we need the following Riesz space version of [13, Lemma 1] which can
be proved in a similar way of [9, Lemma 1] thanks to the multiple Egoro® property of the Riesz
space V.

Lemma 1 Let (X;F) be a measurable space and * : F ¥ V a fuzzy measure. Assume that V
has the multiple Egoro® property. For any double sequence fAn,.ngm:ny2n2 Of sets of F with the
property that, for each m 2 N, A.n #; asn ¥ 1, there is a sequence Tuxgkon Of elements of £
such that A 1

m=1
Further, the sequence Tu,gxon May be chosen so that it is increasing.
In the case that S is locally compact we have the following result:

Theorem 6 Let S be a locally compact, separable metric space. Assume that V has the multiple
Egoro® property. Then, every weakly null-additive, V -valued fuzzy Borel measure on S is Radon.

We end by establishing a close connection between Radonness and continuity of non-additive
measures. The following result generalizes Theorems 2.3 and 3.2 of [25].

Theorem 7 Let S be a complete or locally compact, separable metric space. Let * be an auto-
continuous, V -valued Borel non-additive measure on S. Assume that V has the multiple Egoro®
property. Then, the following two conditions are equivalent:

() *is Radon.

(i) * is continuous from above and below.
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1
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Banach A, B X, Y A, B
Banach Ma, Mg A, B
Theorem A ([13, Theorem 5]) X Hausdor®
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