ある重みつき Hardy 空間を用いての Nevanlinna-type 空間の構成

飯田 安保 (Yasuo IIDA)

東北大学情報科学研究科

0. 序

Nevanlinna-type 空間をある重みつき Hardy 空間の和集合で構成する方法については、1990, 1991 年に Helson, McCarthy が N_* を、1993 年には Eoff が N^p を、どちらも重みつき H^2 -空間の和集合で構成出来ることを示している。本講演では、上記の結果の拡張について述べるとともに、その構成から得られる N_* , N^p 上の inductive limit topology と距離位相が同値であることについても報告する。

1. 準備

まず、代表的な空間である Nevanlinna class, Smirnov class, Hardy spaces の定義を与える。

定義 1-1

 $U=\{z\in {f C}\,|\,|z|<1\}\,,\,T=\{z\in {f C}\,|\,|z|=1\}$ とする。U 上の正則関数 f が

1. $\lim_{r \to 1^-} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta < +\infty$ を満たすとき、 $f \in N$ とする。

 $f\in N$ のとき、 $f^*(e^{i heta}):=\lim_{r o 1^-}f(re^{i heta})$ が a.e. $e^{i heta}\in T$ で存在することが知られている。

- 2. $f\in N$ で、 $\lim_{r o 1^-}\int_0^{2\pi}\log^+|f(re^{i heta})|d heta=\int_0^{2\pi}\log^+|f^*(e^{i heta})|d heta$ を満たすとき、 $f\in N_*$ とする。
- $3. \quad 0 に対し <math>\lim_{r o 1^-} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < +\infty$ を満たすとき、 $f \in H^p$ とする。

また、U 上の有界正則関数全体を H^{∞} で表す。

N を Nevanlinna class, N_* を Smirnov class, H^p (0 を Hardy spaces と呼ぶ。これらの空間のあいだには、以下のような包含関係が成り立つ:

$$H^{\infty} \subset H^q \subset H^p \subset N_* \subset N \qquad (0$$

このような包含関係は昔からよく知られていたが、1977 年に M. Stoll は N_* と H^p の間に位置する空間 N^p を以下のように導入した [S]:

定義 1-2

p>1 とする。 U 上の正則関数 f が

$$\lim_{r \to 1^{-}} \int_{0}^{2\pi} \left[\log^{+} |f(re^{i\theta})| \right]^{p} d\theta < +\infty$$

を満たすとき、 $f \in N^p$ とする。

この N^p には、以下の特徴がある:

$$N^p \subset N^q \ (1 < q < p) \ , \ \bigcup_{q > 0} H^q \subset \bigcap_{p > 1} N^p \ , \ \bigcup_{p > 1} N^p \subset N_*$$

N とその部分空間 N_* , N^p , H^p を総称して Nevanlinna-type 空間と呼ぶ ([CK])。

$2.~N,\,N_*,\,N^p$ のある構成について

次の定理は昔から良く知られている結果である。

定理 2-1 (F. and R. Nevanlinna)

$$f \in N, f \not\equiv 0 \iff f = \frac{g}{h} \quad (g, h \in H^{\infty}, h(z) \neq 0 \quad (z \in U))$$

$$f \in N_* \iff f = \frac{g}{h} \quad (g, h \in H^{\infty}, h : \text{outer function for } N)$$

ここで、 $h(z)=a\exp\left(\int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z}\log\psi(e^{i\theta})\,d\theta\right)\quad (a\in T,\,\psi\geqq0\,,\log\psi\in L^1(T))$ の形の関数を Nに対する外関数 (outer function for N) と呼ぶ。

同様の構成を N^p でも考えることにする。その前に、 N^p に対する外関数を以下のように定義する。

定義 2-2

p>1 とする

$$h(z) = a \exp\left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log \psi(e^{i\theta}) d\theta\right) \quad (a \in T, \ \psi \ge 0, \ \log \psi \in L^1(T)), \ \log^+ \psi \in L^p(T))$$

の形の関数を N^p に対する外関数 (outer function for N^p) と呼ぶ。

このとき、 N_* の場合と同様に考えると、 $N^p\subset \left\{f=rac{g}{h}\ (g\,,\,h\in H^\infty,h : {
m outer\ function\ for\ }N^p)
ight\}$ は成立するが、逆の包含関係は成り立たない。

しかし、 N^p の可逆な元を考えることにより、定理 2-1 と同じような構成が得られる。 以下が Eoff の結果である ($[\mathrm{E}]$)。

定理 2-3 (Eoff, 1993)

p>1 とし、 N^p の可逆な元全体を $(N^p)^{-1}$ で表す。このとき以下が成り立つ。

$$f \in N^p \iff f = \frac{g}{h} \quad (g, h \in H^{\infty}, h \in (N^p)^{-1})$$

次の系は容易に示される。

 $rac{8 \cdot 2 - 4}{p > 1 \; , \; 0 < q \leq \infty}$ とする。このとき以下が成り立つ。

$$f \in N^p \iff f = \frac{g}{h} \quad (g, h \in H^q, h \in (N^p)^{-1})$$

3. 重みつき Hardy 空間の和集合による N_* , N^p の構成

まず最初に、Helson, McCarthy, Eoffらによる N_* , N^p についての結果について述べる。

① N_* の場合

定理 2-1 は、 H^2 の場合でも成り立つので、

$$f \in N_* \iff f = \frac{g}{h} \quad (g, h \in H^2, h : \text{outer function for } N)$$

ともできる。よって、 $f\in N_*$ に対し、 $g=fh\in H^2$ (h: outer function for N) となる。p を多項式とすると、

$$\frac{1}{2\pi} \int_0^{2\pi} |f^*(e^{i\theta})h^*(e^{i\theta}) - p^*(e^{i\theta})h^*(e^{i\theta})|^2 d\theta = \frac{1}{2\pi} \int_0^{2\pi} |f^*(e^{i\theta}) - p^*(e^{i\theta})|^2 |h^*(e^{i\theta})|^2 d\theta$$

から、Beurling の定理を用いて

h: outer function for $N\iff f$ は多項式全体の $L^2(|h^*(e^{i\theta})|^2d\theta)$ -閉包に属する

ということがいえる。この閉包を $H^2(|h|^2)$ で表すことにする。以上より $N_*\subset \bigcup H^2(|h|^2)$ が分かる。

逆に $f\in H^2(|h|^2)$ とすると、 $fh=g\in H^2$ となり、これより f=g/h $(g\,,\,h\in H^2\,,\,h$: outer function for N) となるので $f\in N_*$ が分かる。

以上より
$$N_* = \bigcup_h H^2(|h|^2)$$
 が示される。

一方 $p \ge 1$ に対し、 $W_p = \{w : \text{weight} \mid \log w \in L^p(T)\}$ とすると、 $h \in H^2$ が outer function for N のとき $|h^*(e^{i\theta})|^2 \in W_1$ がいえる。したがって下記の定理が得られる。

この定理は最初 [H1] によって得られたが、その後 [M1, M2] において詳しい説明がなされている。

定理 3-1 (Helson, 1990)

$$N_* = \bigcup_{h \in H^2, h : outer} H^2(|h|^2) = \bigcup_{w \in W_1} H^2(w).$$

2 N^p の場合

上記の方法と同様にして、 N^p の場合は以下の定理が得られる $([\mathrm{E}])$ 。

定理 3-2 (Eoff, 1993)

p>1 に対し、以下が成り立つ。

$$N^p = \bigcup_{h \in H^2 \cap (N^p)^{-1}} H^2(|h|^2) = \bigcup_{w \in W_p} H^2(w)$$

③ Helson, McCarthy, Eoff の結果の拡張

以上の結果は重みつき H^2 -空間を用いて構成されているが、実は同様の結果が重みつき H^q -空間 $(0 < q < \infty)$ によって示される。

定理 3-3

p>1 , $0< q<\infty$ とし、 $H^q(|h|^q)$ を多項式全体の $L^q(|h^*(e^{i\theta})|^qd\theta)$ -閉包とする。このとき以下が成り立つ。

(1)
$$N_* = \bigcup_{h \in H^q, h:outer} H^q(|h|^q) = \bigcup_{w \in W_1} H^q(w)$$

(2)
$$N^p = \bigcup_{h \in H^q \cap (N^p)^{-1}} H^q(|h|^q) = \bigcup_{w \in W_p} H^q(w)$$

$4.~N_*, N^p$ 上の同値な位相について

 N_* における距離は

$$\rho(f,g) = \lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{0}^{2\pi} \log(1 + |f(re^{i\theta}) - g(re^{i\theta})|) d\theta \quad (f, g \in N_{*})$$

で表される。一方、 N^p (p>1) における距離は

$$\rho_p(f,g) = \lim_{r \to 1^-} \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left[\log(1 + |f(re^{i\theta}) - g(re^{i\theta})|) \right]^p d\theta \right\}^{\frac{1}{p}} \quad (f, g \in N^p)$$

で表される。これらの距離に関する距離位相をそれぞれ τ , τ_p で表そう。

ところで定理 3-3 から、以下のような N_* (N^p) 上の別の位相 (inductive limit topology) を考えることが出来る (記号で I_q $(I_{p,q})$ と表す):

「 V_{λ} を、任意の $w\in W_1$ (W_p) に対し、 $V_{\lambda}\cap H^q(w)$ が $H^q(w)$ における 0-近傍であるような集合とする。このとき、 $(V_{\lambda})_{\lambda\in\Lambda}$ を I_q $(I_{p,q})$ の 0-近傍系とする。」

このとき、 τ (τ_p) とこの I_q $(I_{p,q})$ が同値であることが分かる。

定理 4_1

$$p>1\,,\,0< q<\infty$$
 に対し、 au (au_p) と I_q $(I_{p,q})$ は N_* (N^p) 上、同値な位相である。

証明は [E] の方法と同様にして出来る。

参考文献

- [CK] J. S. Choa and H. O. Kim, Composition operators between Nevanlinna-type spaces, preprint.
- [E] C. M. Eoff, A representation of N_{α}^{+} as a union of weighted Hardy spaces, Complex Variables 23 (1993), 189-199.
- [H1] H. Helson, Large analytic functions, Operator Theory: Advanced and Applications, Birkhäuser, 43 (1990), 209-216.
- [H2] H. Helson, Large analytic functions, II, in "Analysis and partial differential equations", (Cora Sadosky, ed.), Marcel Dekker, Basel, 1990, 217-220.
- [I] Y. Iida, Some representations of Nevanlinna-type spaces by weighted Hardy spaces, in preparation.
- [M1] J. E. McCarthy, Common ranges of co-analytic Toeplitz operators, J. Amer. Math. Soc. 3, 4 (1990), 793-799.
- [M2] J. E. McCarthy, Topologies on the Smirnov class, J. Funct. Anal. 104 (1992), 229-241.
- [S] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. **35** (1977), 139-158.

Yasuo IIDA Graduate School of Information Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan

e-mail: iida@ims.is.tohoku.ac.jp